• Title/Summary/Keyword: Cyclohexane film

Search Result 16, Processing Time 0.016 seconds

ANTICORROSION PROPERTIES OF SIOC COATED SUS-316

  • Kim, Su-Ryong;Gwon, U-Taek;Kim, Jeong-Ju;Kim, Jong-Il;Kim, Yeong-Hui;Kim, Jeong-Il;U, Chang-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.34.2-34.2
    • /
    • 2009
  • The ceramic coatings on metallic materials have attracted by many researchers due to the chemical inertness of ceramic materials. In such aspect, SiOC is a promising material tobe used as protective coating layer on metallic materials due to its outstanding thermal stability and chemical inertness. In this research, SiOC coating was carried out onto SuS-316 substrate using Cl free preceramic polymers such aspolyphenylcarbosilane. 20% of polymethylphenylsilane in cyclohexane solution was coated onto metal surface by dip coating method. Thermal oxidation was carried out at $200^{\circ}C$ for crosslink of the preceramic polymer and the sample was pyrolysized at $800^{\circ}C$ under argon to convert the preceramic polymer to amorphous SiOCx state. The microstructure of the SiOCx film after pyrolysis was investigated using FE-SEM. Corrosion resistance of SiOC coated SuS-316 substrate has been investigated using 5% HCl solution at 25, 40, 60 and $80^{\circ}C$ for 7days. The data revealed that the corrosion resistance increased with SiOC coating on SuS-316 substrate.

  • PDF

Morphological Transitions of Symmetric Polystyrene-block-Poly(1,4-butadiene) Copolymers in Thin Films upon Solvent-Annealing (용매 어닐링에 의한 박막에서 Polystyrene-Poly(1,4-butadiene) 블록공중합체의 모폴로지 전이)

  • Lee, Dong-Eun;Kim, Eung-Gun;Lee, Dong-Hyun
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.542-548
    • /
    • 2012
  • Morphological characteristics and formation of symmetric polystyrene-block-poly(1,4-butadiene) copolymer (PS-b-PBD) in thin films upon solvent-annealing were investigated by using atomic force microscopy (AFM). The thin films solvent-annealed in cyclohexane revealed the perforated lamellae of poly(1,4-butadiene) in the matrix of polystyrene while those solvent-annealed in n-hexane exhibited highly disordered patterns. Interestingly, when the thin films of PS-b-PBD were solvent-annealed with binary mixtures of cyclohexane and n-hexane, the morphological transition from the perforated lameallae to the perpendicularly-oriented lamellae of poly(1,4-butadiene) could be induced by changing the mixing ratio of both solvents. We also demonstrated that after microdomians of poly(1,4-butadiene) were successfully degraded by UV-$O_3$, linear poly(dimethyl siloxane) chains were back-filled into the etched regions of the thin film and then converted to silica nano-objects by oxygen plasma treatments.

Synthesis of SiO2/Ag Core-shell Nanoparticles for Conductive Paste Application (SiO2/Ag 코어-쉘 나노입자의 합성 및 전도성 페이스트 적용)

  • Sim, Sang-Bo;Han, Jong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.28-34
    • /
    • 2021
  • SiO2/Ag core-shell nanoparticles were synthesized by combining modified Stöber process and reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane reverse micells. The SiO2/Ag core-shells were studied for structure, morphology and size using UV-visible spectroscopy, XRD, SEM and TEM. The size of a SiO2/Ag core-shell could be controlled by changing the [water]/[DDBA] molar ratio (WR) values. The size and the polydispersity of SiO2/Ag core-shells increased with increase of the WR value. The resultant Ag nanoparticles exhibit a strong surface plasmon resonance (SPR) peak at 430 nm over the amorphous SiO2 nanoparticles. The SPR peak shifted to the red side with increase in nanoparticle size. Conductive pastes with 70 wt% SiO2/Ag core-shell were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste film of the SiO2/Ag core-shell showed higher surface resistance than the commercial Ag paste in the range of 460~750 µΩ/sq.

Subacute Inhalation Toxicity of Cyclohexanone in B6C3F1 Mice

  • Lee, Yong-Hoon;Chung, Yong Hyun;Kim, Hyeon-Yeong;Shin, Seo Ho;Lee, Sang Bae
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.49-53
    • /
    • 2018
  • Cyclohexanone ($C_6H_{10}O$, CAS No. 108-94-1) is a colorless oily liquid obtained through the oxidation of cyclohexane or dehydrogenation of phenol. It is used in the manufacture of adhesives, sealant chemicals, agricultural chemicals, paint and coating additives, solvent, electrical and electronic products, paints and coatings, photographic supplies, film, photochemicals, and as an intermediate in nylon production. Owing to the lack of information on repeated inhalation toxicity of cyclohexaone, in this study, we aimed to characterize the subacute inhalation toxicity. B6C3F1 mice were exposed to 0, 50, 150, and 250 ppm of cyclohexanone for 6 hr/day, 5 days/week for 4 weeks via whole-body inhalation in accordance with the OECD Test Guideline 412 (subacute inhalation toxicity: 28-day study). Mortality, clinical signs, body weights, food consumption, hematology, serum biochemistry, organ weights, as well as gross and histopathological findings were evaluated between the control and exposure groups. No mortality or remarkable clinical signs were observed during the study. No adverse effects on body weight, food consumption, hematology, serum biochemistry, and organ weights, gross or histopathological lesions were observed in any male or female mice in any of the exposure groups, although some statistically significant changes were observed in organ weights. We concluded that no observable adverse effect level (NOAEL) is above 250 ppm in mice exposed to cyclohexanone for 6 hr/day for 5 days/week.

Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution

  • Lemallem, Salah Eddine;Fiala, Abdelali;Ladouani, Hayet Brahim;Allal, Hamza
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.237-253
    • /
    • 2022
  • The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10-3 - 10-3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.

A Study on the Preparation and Purification Characteristics of Graphene Oxide by Graphite Type (흑연 종류에 따른 산화 그래핀의 제조 및 정제를 통한 특성연구)

  • Jeong, Kyeom;Kim, Young-Ho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.132-138
    • /
    • 2021
  • Research is being conducted on graphene to provide graphene having both excellent physical as well as electrical properties in addition to unique physical properties. In this study, Hummer's method, which is a representative method for chemical exfoliation, was applied in order to investigate the possibility of the mass production of high-quality graphene oxide. Three types of graphite (graphite, crystalline graphite, and expanded graphite) were used in the preparation of graphene oxide with variations in the amount of potassium permanganate added, reaction temperature, and reaction time. Then a Fourier transform infrared spectroscopy (FT-IR), a Raman spectrometer, and a transmission electron microscope (TEM) were used to measure the quality of the prepared graphene oxide. Of the three types of graphite used in this experiment, crystalline graphite showed the highest quality. The prepared graphene oxide was then purified with an organic solvent, and an analysis conducted using energy dispersive X-ray spectroscopy (EDS). From the results of the residual values, we were able to confirm that both acid wastewater and wastewater were best purified using cyclohexane. The method for manufacturing graphene oxide as well as the method of purification using organic solvents that are presented in this study are expected to have less of an environmental impact, making them environmentally friendly. This makes them suitable for use in various industrial fields such as the film industry and for heat dissipation and as coating agents.