DOI QR코드

DOI QR Code

Synthesis of SiO2/Ag Core-shell Nanoparticles for Conductive Paste Application

SiO2/Ag 코어-쉘 나노입자의 합성 및 전도성 페이스트 적용

  • Sim, Sang-Bo (Changsung Nanotech Co., Ltd.) ;
  • Han, Jong-Dae (School of Civil, Environmental and Chemical Engineering, Changwon National University)
  • 심상보 (창성나노텍(주)) ;
  • 한종대 (창원대학교 공과대학 토목환경화공융합공학부)
  • Received : 2020.12.10
  • Accepted : 2020.12.23
  • Published : 2021.02.10

Abstract

SiO2/Ag core-shell nanoparticles were synthesized by combining modified Stöber process and reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane reverse micells. The SiO2/Ag core-shells were studied for structure, morphology and size using UV-visible spectroscopy, XRD, SEM and TEM. The size of a SiO2/Ag core-shell could be controlled by changing the [water]/[DDBA] molar ratio (WR) values. The size and the polydispersity of SiO2/Ag core-shells increased with increase of the WR value. The resultant Ag nanoparticles exhibit a strong surface plasmon resonance (SPR) peak at 430 nm over the amorphous SiO2 nanoparticles. The SPR peak shifted to the red side with increase in nanoparticle size. Conductive pastes with 70 wt% SiO2/Ag core-shell were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste film of the SiO2/Ag core-shell showed higher surface resistance than the commercial Ag paste in the range of 460~750 µΩ/sq.

SiO2/Ag 코어-쉘 나노입자를 수정된 Stöber 공정법과 물/dodecylbenzenesulfonic acid (DDBA)/cyclohexane의 역 미셀에서 acetoxime을 환원제로 사용하는 역 미셀 방법을 상호 조합하여 합성하였다. SiO2/Ag 코어-쉘은 UV-visible spectroscopy, XRD, SEM 및 TEM을 사용하여 구조, 형태 및 크기를 조사하였다. SiO2/Ag 코어-쉘의 나노입자 크기는 [물]/[DDBA]의 몰비(WR)의 값을 조절하여 제어할 수 있었다. SiO2/Ag 코어-쉘의 크기와 다분산성은 WR 값이 증가함에 따라 증가하였다. 비정질 SiO2 나노입자 위에 생성된 Ag 나노입자는 430 nm에서 강한 표면 플라즈몬 공명 (SPR) 피크를 나타내었다. SPR 피크는 나노입자 크기의 증가에 따라 장파장으로의 적색 이동을 나타내었다. 합성된 SiO2/Ag 코어-쉘을 분산시켜 70 wt% 조성의 전도성 페이스트를 제조하고, 스크린 인쇄법으로 PET 필름에 코팅하여 전도성을 조사하였다. SiO2/Ag 코어-쉘 페이스트로 코팅된 필름은 상용 Ag 페이스트에 비하여 높은 460~750 µΩ/sq 영역의 표면저항을 나타내었다.

Keywords

References

  1. C. Xu, W.-J. Li, Y.-M. Wei, and X.-Y. Cui, Characterization of SiO2/Ag composite particles synthesized by in situ reduction and its application in electrically conductive adhesives, Mater. Des., 83, 745-752 (2015). https://doi.org/10.1016/j.matdes.2015.06.036
  2. H. Misran, M. A. Salim, and S. Ramesh, Effect of Ag nanoparticles seeding on the properties of silica spheres, Ceram. Int., 44, 5901-5908 (2018). https://doi.org/10.1016/j.ceramint.2017.12.118
  3. S. Kalele, S. W. Gosavi, J. Urban, and S. K. Kulkarni, Nanoshell particles: Synthesis, properties and applications, Curr. Sci., 91, 1038-1052 (2006).
  4. A. Sakthisabarimoorthi, S. A. Martin Britto Dhas, and M. Jose, Fabrication and nonlinear optical investigations of SiO2@Ag core-shell nanoparticles, Mat. Sci. Semicon. Proc., 71, 69-75 (2017). https://doi.org/10.1016/j.mssp.2017.07.008
  5. J.-L. Gong, J.-H. Jiang, Y. Liang, G.-L. Shen, and R.-Q. Yu, Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology, J. Colloid Interface Sci., 298, 752-756 (2006). https://doi.org/10.1016/j.jcis.2006.01.024
  6. I. Devecia and B. Mercimekb, Performance of SiO2/Ag Core/Shell particles in sonocatalalytic degradation of Rhodamine B, Ultrason. Sonochem., 51, 197-205 (2019). https://doi.org/10.1016/j.ultsonch.2018.10.025
  7. K. I. Dhanalekshmi and K. S. Meena, Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles, Spectrochim. Acta A, 128 887-890 (2014). https://doi.org/10.1016/j.saa.2014.02.063
  8. J. Alimunnisa, K. Ravichandran, and K. S. Meena, Synthesis and characterization of Ag@SiO2 core-shell nanoparticles for antibacterial and environmental applications, J. Mol. Liq., 231 281-287 (2017). https://doi.org/10.1016/j.molliq.2017.01.103
  9. J. H. Sohn, L. Q. Pham, H. S. Kang, J. H. Park, B. C. Lee, and Y. S. Kang, Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation, Radiat. Phys. Chem., 79, 1149-1153 (2010). https://doi.org/10.1016/j.radphyschem.2010.06.005
  10. E. B. Choi and J.-H. Lee, Dewetting behavior of Ag in Ag-coated Cu particle with thick Ag shell, Appl. Surf. Sci., 480, 839-845 (2019) https://doi.org/10.1016/j.apsusc.2019.02.221
  11. A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol, Mater. Res. Bull., 43, 90-96 (2008). https://doi.org/10.1016/j.materresbull.2007.02.013
  12. J. C. Flores, V. Torres, M. Popa, D. Crespo, and J. M. Calderon-Moreno, Preparation of core-shell nanospheres of silica-silver: SiO2@Ag, J. Non-Cryst. Solids, 354, 5435-5439 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.09.014
  13. Y. Xie, R. Ye, and H. Liu, Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant, Colloids Surf, A. Physicochem. Eng. Asp., 279, 175-178 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.056
  14. N. Hagura, W. Widiyastuti, F. Iskandar, and K. Okuyama, Characterization of silica-coated silver nanoparticles prepared by a reverse micelle and hydrolysis-condensation process, Chem. Eng. J., 156, 200-205 (2010). https://doi.org/10.1016/j.cej.2009.10.024
  15. J. Eastoe, M. J. Hollamby, and L. Hudson, Recent advances in nanoparticle synthesis with reversed micelles, Adv. Colloid Interface Sci., 128-130, 5-15 (2006). https://doi.org/10.1016/j.cis.2006.11.009
  16. A. Ledo, F. Martinez, M. A. Lopez-Quintela, and J. Rivas, Synthesis of Ag clusters in microemulsions: A time-resolved UV-vis and fluorescence spectroscopy study, Physica B, 398, 273-277 (2007). https://doi.org/10.1016/j.physb.2007.05.010
  17. D. Singha, N. Barman, and K. Sahu, A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature, J. Colloid Interface Sci., 413, 37-42 (2014) https://doi.org/10.1016/j.jcis.2013.09.009
  18. P. S. Popovetskiya and D.I. Beketovaa, Silver nanoparticles stabilized by AOT and Tergitol NP-4 mixture: Influence of composition on electrophoretic concentration, properties of concentrated organosols and conductivity of films, Colloids Surf. A, 568, 51-58 (2019). https://doi.org/10.1016/j.colsurfa.2019.01.074
  19. M. Lismont, C. A. Paez, and L. Dreesen, A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles, J. Colloid Interface Sci., 447, 40-49 (2015). https://doi.org/10.1016/j.jcis.2015.01.065
  20. W. Stober and A. Fink, Controlled, growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62-69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  21. K. Natte, T. Behnke, G. Orts-Gil, C. Wurth, J. F. Friedrich, W. Osterle, and U. Resch-Genger, Synthesis and characterisation of highly fluorescent core-shell nanoparticles based on Alexa-Dyes, J. Nanoparticles Res., 14, 680-697 (2012). https://doi.org/10.1007/s11051-011-0680-9
  22. S. I. Mogal, V. G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. A. Joshi, and D. O. Shah, Single-step synthesis of silver-doped titanium dioxide: Influence of silver on structural, textural, and photocatalytic properties, Ind. Eng. Chem. Res., 53, 5749-5758 (2014). https://doi.org/10.1021/ie404230q
  23. V. Sharma, D. Verma, and G. S. Okram, Influence of surfactant, particle size and dispersion medium on surface plasmon resonance of silver nanoparticles, J. Phys. Condens. Matter., 32, 145302-145304 (2020). https://doi.org/10.1088/1361-648X/ab601a
  24. F. Ghanbary and A. Jafarian, Preparation and photocatalytic properties of silver doped titanium dioxide nanoparticles and using artificial neural network for modeling of photocatalytic activity, Aust. J. Basic & Appl. Sci., 5, 2889-2898 (2011)
  25. R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha, Size distribution of silver nanoparticles: UV-visible spectroscopic assessment, Nanosci. Nanotechnol. Lett., 4, 30-34 (2012). https://doi.org/10.1166/nnl.2012.1278
  26. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, Size and temperature dependence of the surface plasmon resonance in silver nanoparticles, Ukr. J. Phys., 57, 266-277 (2012). https://doi.org/10.15407/ujpe57.2.266
  27. S. Peng, J. M. McMahon, G. C. Schatz, S. K. Gray, and Y. Sun, Reversing the size-dependence of surface plasmon resonances, Proc. Natl. Acad. Sci., 107, 14530-14534 (2010). https://doi.org/10.1073/pnas.1007524107
  28. F. Ding, E. B. Guidez, C. M. Aikens, and X. Li, Quantum coherent plasmon in silver nanowires: A real-time TDDFT study. J. Chem. Phys., 140, 244705 (2014). https://doi.org/10.1063/1.4884388
  29. A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol, Physica E, 27, 104-112 (2005). https://doi.org/10.1016/j.physe.2004.10.014
  30. C. Petit, P. Lixon, and M. P. Pileni, In situ synthesis of silver nanocluster in AOT reverse micelles, J. Phys. Chem., 97, 12974-12983 (1993). https://doi.org/10.1021/j100151a054
  31. Y. Yu, Y. Jiang, Z. Tang, Q. Guo, J. Jia, Q. Xue, K. Wu, and E. Wang, Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films, Phys. Rev. B, 72, 205405 (2005). https://doi.org/10.1103/PhysRevB.72.205405
  32. J.-L. Gong, J.-H. Jiang, Y. Liang, G.-L. Shen, and R.-Q. Yu, Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology, J. Colloid Interface Sci., 298, 752-756 (2006). https://doi.org/10.1016/j.jcis.2006.01.024
  33. Z. Moradi, K. Akhbari, A. Phuruangrat, and F. Costantino, Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor, J. Mol. Struct., 1133, 172-178 (2017). https://doi.org/10.1016/j.molstruc.2016.12.001