• Title/Summary/Keyword: Cycling time

Search Result 283, Processing Time 0.028 seconds

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

A clinical study on pediatric patients with fracture that visited oriental medicine center (한방병원에 내원한 소아 골절환자에 대한 임상적 고찰)

  • Chang, Gyu-Tae;Kim, Jang-Hyun;Baek, Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Objectives: The purpose of this study was clinical review of pediatric patients with fracture that visited oriental medicine center. Methods: In retrospective study, the pediatric patients, who were visited to oriental medicine center due to fracture, were classified by sex, age, fracture site, date of accident, injury mechanism, time of treatment, kind of treatment. Results and Conclusion: Total 32 patients were visited due to fracture from April 2001 to March 2004. Male Patients were 27, female were 5. In distribution of age, 10 year-old and 11 year-old were 40.7% of totality. In distribution of month, May was 10(31.3%), June was 6(18.8%), and March was 4(12.5%). There are more patients with fracture in spring than other season. In distribution of fracture site, foot was 15(46.9%), hand was 7(21.9%), ankle was 4(12.5%), upper extremity was 3(9.4%), clavicle was 2(6.3%), tibia was 1(3.1%). In distribution of injury mechanism, slip down was 23(71.9%), impaction 5(15.6%), fall down 3(19.4%), crushing injury 1(13.1%). In distribution of injury motive, soccer was 8(25.0%), basketball 4(12.5%), skating 3(9.4%), cycling 2(6.3%), sliding 1(3.1%), Tae-kwon-do 1(3.1%), other sports 5(15.6%), collision 1(3.1%), walking 2(6.3%), hit 3(9.4%), etc. 2(6.3%). In distribution of treatment account, one time was 23(71.9%), twice 3(9.4%), three times 2(6.3%), four times 2(6.3%), five times 2(6.3%). In distribution of treatment time, 1 week was 26(81.3%), 2 weeks 4(12.5%), 3 weeks 2(6.3%). In distribution of treatment kind, acupuncture treatment was 18(56.3%), negative cupping 7(21.9%), splint 13(40.6%), and other treatment(coban taping, medical patch, and so on) 5(15.6%), transfer 14(43.8%).

  • PDF

Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package (플립 칩 패키지 솔더의 탄소성 거동과 크립 해석)

  • Choi, Nam-Jin;Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Creep behaviors of the solder balls in a flip chip package assembly during thermal cycling test is investigated.. A material models used in the finite element analysis are viscoplastic model introduced by Anand and creep model called partitioned model. Experiment of two temperature cycles using moir$\acute{e}$ interferometry is conducted to verify the reliability of material models for the analysis of thermo-mechanical behavior. Bending deformations of the assemblies and average strains of the solder balls due to temperature change and dwell time are investigated. The results show that time-dependent shear strain of solder by the partitioned model is in excellent agreement with those by moir$\acute{e}$ interferometry, while there is considerable difference between results by Anand model and experiment. In this paper, the partitioned model is employed for the time-dependent creep analysis of the FC-PBGA package. It is also shown that the thermo-mechanical stress becomes relaxed by creep behavior at high temperature during temperature cycles.

Transducer analysis and signal processing of PMSF with embedded bluff body

  • Yan, Xiao-Xue;Xu, Ke-Jun;Xu, Wei;Yu, Xin-Long;Wu, Jian-Ping
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.296-307
    • /
    • 2020
  • Permanent magnet sodium flowmeter (PMSF) have been used to measure the sodium flow in fast breeder reactors. Due to the effects of irradiation, thermal cycling, time lapse, etc., the magnetic flux density of the PMSF will decrease after being used in the reactor for a period of time. Therefore, it must be calibrated regularly. But some flowmeters that immersed in sodium cannot be removed for an off-line calibration, so the on-line calibration is required. However, the best online calibration accuracy of PMSF using cross-correlation analysis method was 2.0-level without considering the repeatability. In order to further improve this work, the operational principle of the transducer in PMSF is analyzed and the design principle of the transducer is proposed. The transducers were tested on the sodium flow loop to collect the experimental data. The signal characteristics are analyzed from the time and frequency domains, respectively. The cross-correlation analysis method based on biased estimation is adopted to obtain the flow rate. The verification experimental results showed that the measurement accuracy is 1.0-level when the flow velocity is above 0.5 m/s, and the measurement accuracy is 3.0-level when the flow velocity is in the range of 0.2 m/s to 0.5 m/s.

Comparison of Mass and Nutrient Dynamics of Coarse Woody Debris between Quercus serrata and Q. variabilis Stands in Yangpyeong

  • Kim, RaeHyun;Son, Yowhan;Hwang, Jaehong
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • Coarse woody debris (CWD, $\ge$ 5 cm in maximum diameter) is an important functional component, especially to nutrient cycling in forest ecosystems. To compare mass and nutrient dynamics of CWD in natural oak forests, a two-year study was conducted at Quercus serrata and Q. variabilis stands in Yangpyeong, Kyonggi Province. Total CWD (snag, stump, log and large branch) and annual decomposition mass (Mg/ha) were 1.9 and 0.4 for the Q. serrata stand and 7.5 and 0.5 for the Q. variabilis stand, respectively. Snags covered 72% of total CWD mass for the Q. variabilis stand and 42% for the Q. serrata stand. Most of CWD was classified into decay class 1 for both stands. CWD N and P concentrations for the Q. variabilis stand significantly increased along decay class and sampling time, except for P concentration in 2002. There were no differences in CWD N concentration for the Q. serrata stand along decay class and sampling time. However, CWD P concentration decreased along sampling time. CWD N and P contents (kg/ha) ranged from 3.5∼4.7 and 0.8∼1.3 for the Q. serrata stand to 22.8∼23.6 and 3.7∼4.7 for the Q. variabilis stand. Nitrogen and P inputs (kg/ha/yr) into mineral soil through the CWD decomposition were 0.7 and 0.3 for the Q. serrata stand and 1.6 and 0.3 for the Q. variabilis stand, respectively. The number of CWD and decay rate were main factors influencing the difference in CWD mass and nutrient dynamics between both stands.

Experiences of Hope in Clients with Chronic Schizophrenia (만성정신분열증환자의 희망체험에 대한 현상학적 이해)

  • Koh Moon-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.3
    • /
    • pp.555-564
    • /
    • 2005
  • Purpose: This study was done to uncover the nature of hope experienced by clients with chronic schizophrenia. Method: A phenomenological approach developed by Van Manen was adopted. Data was collected from intensive interviews on 7 clients with chronic schizophrenia and the expatients' biographies and arts. A phenomenological reflection was done in terms of the four life world existentials. Result: Corporeality: Perceiving the body feeling better, proudness of self, accepting their own ill body and transcending the limitation of the body, expressing self, and staying within the boundary of a healthy body were disclosed as the body's experience of hope. Spatiality :A place with safety, freedom, peace, and sharing was the space of hope. Temporality :The essential experience of time with hope was the continuity of moving forward amid cycling and moments being filled up with something. Relationality : Connecting with someone, having someone who is dependable, understandable and exchanging interest and love were identified as the relationships of hope with others. Conclusion: The results of this study show that chronic schizophrenic patients always strive hard to keep hope and they really need someone who can support them.

Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method (전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성)

  • Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance ($561mF/cm^2$), a high rate capability (85%), and a good cycling performance (97% retention).

A Study on the Production and Decomposition of Litters, of Pine Forests in South Korea (남한의 송백림에 있어서 낙엽의 생산과 분해에 관한 연구)

  • Chang, Nam-Kee;Nam-Chang Park
    • The Korean Journal of Ecology
    • /
    • v.9 no.1
    • /
    • pp.79-90
    • /
    • 1986
  • The production and decomposition of litters and nutrient cycling of forests were studied at the pine forests such as Pinus densiflora, Pinus koraiensis, Pinus rigida, Pinus thunbergii, Abies holophylla and Larix kaempfer. The annual litter production of the P. densiflora forest was the most on Mt. Mudeung which was 620.75g/$m^2$ and the least on Mt. Halla which was 155.00g/$m^2$. The decay rate of litters was the highest at the P. densiflora forest on Mt. Mudeung which was k=0.256 and the lowest at the P. densiflora forest on Mt. Halla and A. holophylla on Mt. Jiri which were k=0.099. The half time of decomposition of litters was shortest at the P. densiflora forest on Mt. Mudeung and the longest at the P. densiflora on Mt. Halla and A. holophylla forests on Mt. Jiri. The average decay rate of the L. kaempferi forests which was k=0.204 was the highest and that of the A. holophylla forests which was k=0.122 was the lowest. The decay rate tended to decrease against increasing the altitude. The annual production of litterr, the contents of mineral nutrients and the amounts of mineral nutrients inputted into the forest soil tended to increase in proportion to the decay rate, k.

  • PDF

Reliability Evaluation and failure Analysis for High Voltage Ceramic Capacitor (고압 커패시터의 고장분석과 신뢰성 평가)

  • 김진우;송옥병;신승우;이희진;신승훈;유동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.337-337
    • /
    • 2001
  • High voltage ceramic capacitors are widely applied in power electronic circuits, such as filters, snubbers, and resonant circuits, due to their excellent features of high voltage endurance and low aging. This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure nodes and failure mechanisms were identified in order to understand the failure physics in a component. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective closed-loop failure analysis. Also, the condition for dielectric breakdown was investigated. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal shock test as well as pressure cooker test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which, might cause electrical short in underlying circuitry, can occur during curing or thermal cycling. The results can be conveniently used to quickly identify defective lots, determine mean time to failure (MTTF) of each lot at the level of Inspection, and detect major changes in the vendors processes.

  • PDF

A Study on Efficiency Improvement by Fine Tuning of Power Plant Control (제어시스템 튜닝에 의한 발전소 효율향상에 관한 연구)

  • Kim, Ho-Yol;Kim, Byoung-Chul;Byun, Seung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1496-1501
    • /
    • 2012
  • A fine tuning on a control system is essential not only for stable operation but also for efficient operation of the power plant. There has been a very few studies on efficiency change by control system tuning. So, it was not clear that if it could be improved or not when the control is stable by fine tuning and how much it could be improved if it works. An accurate algorithm for measurement of the plant efficiency was newly introduced and implemented to measure integrated fuel flow and electricity MW output and to calculate the mean efficiency for given time. As a result, stable operation after fine tuning of control parameters for major controlled variables brought higher efficiency than un-stable operations like a cycling or an oscillation. The plant efficiency has been monitored during various tests and tunings to confirm how much it changes by tuning of the control system on power plant. Now, we can say that the efficiency can be improved in stable operation by fine tuning of the control system.