• Title/Summary/Keyword: Cyclic-Voltammetry(C-V)

Search Result 83, Processing Time 0.031 seconds

Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group (아미드 작용기를 가진 부식억제제를 사용한 금속의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.48-56
    • /
    • 2011
  • In this study, we investigated the C-V diagrams and metal surface related to the electrochemistry characterization of metal(nickel, SUS-304). We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150, 200 and 250 mV/s. As a result, the C-V characterization of metal using N,N-dimethylacetamide and N,N-dimethylformamide inhibitors appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic corrosion inhibitors, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the addition of inhibitors containing amide functional group enhances the corrosion resistance properties.

Electrochemistry Characterization of Nickel Using Ethanolamine Compound Additives (에탄올아민화합물 첨가에 대한 니켈의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.531-538
    • /
    • 2010
  • The electrochemistry characterization of metal is important in many industrial applications. In this study, we investigated the C-V diagrams related to the electrochemistry characterization of nickel. We determined electrochemical measurement by using cyclic voltammetry with a three electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650mV and measured to the initial point. The scan rate were 100, 150, 200 and 200mV/s. As a result, the C-V characterization of nickel using ethanolamine and ethylethanolamine inhibitor appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding ethanolamine compound additive, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the effect of the electrochemistry characterization of nickel depends on ethanolamine structure interaction to adsorption complex.

A Study on the Stability of Langmuir-Blodgett(LB) Films of Saturated Fatty Acid Monolayer (포화지방산 단분자층 LB막의 안정성에 관한 연구)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.352-358
    • /
    • 2014
  • We were investigated the stability through the electrochemical characteristics of saturated fatty acid(C12, C14, C16, C18) monolayer LB films by cyclic voltammetry. Saturated fatty acid monolayer LB films was deposited on the indium tin oxide(ITO) glass by the LB method. The electrochemical properties were measured by cyclic voltammetry with a three-electrode system in 0.1 N $NaClO_4$ solution. The measuring range was continuously oxidized to 1650 mV, with an initial potential of -1350 mV was reduced. Scanning rates of 50, 100, 150, 200, and 250 mV/s were set. As a result, LB monolayer films of saturated fatty acid were appeared on irreversible processes by the oxidation current from the cyclic voltammogram. Diffusion coefficient(D) of saturated fatty acid(C12, C14, C16, and C18) was calculated 22.231, 2.461, 7.114 and 2.371 ($cm^2s^{-1}{\times}10^{-4}$) in 0.1 N $NaClO_4$ solution, respectively.

Electrochemical Behavior and Square Wave Voltammetric Determination of Doxorubicin Hydrochloride

  • Hahn, Young-Hee;Lee, Ho-Young
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.31-34
    • /
    • 2004
  • The electrochemical behavior of doxorubicin hydrochloride was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). From CV and SWV studies of doxorubicin hydrochloride in the acetate buffers of various pH values, it was found that protons were involved in the reduction of the antibiotic at the $H^+/e^$- ratio at one ( $\DeltaEp/pH =-53 ∼ -61 mV at 23^{\circ}C$), proposing the electrochemical reduction of the quinone moiety in its anthraquinone aglycone. Its electrochemical behavior was pseudo-reversible in the acetate buffer of pH 3.5 by exhibiting the well-defined single cathodic and anodic waves and the ratio of $lp^a/lp^c$ at approximately one over the scan rates of 10∼100 mV/s. Fast and sensitive SWV showing a single peak of doxorubicin has been applied for its quantitative analysis using an acetate buffer of pH 3.5. A linearity was obtained when the peak currents (lp) were plotted against concentrations of doxorubicin in the range of $5.0\times10^{-7} M∼1.0\times10^{-5}$M with a detection limit of $1.0\times10^{-7}$ M.

Electrochemical Characteristics of 5,10,15,20-Tetrakis-Octadecyloxymethylphenyl-Porphyrin-Zn(II) Langmuir-Blodgett (LB) Films

  • Koo, Ja-Ryong;Choi, Don-Soo;Kim, Young-Kwan;Kim, Jung-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.58-62
    • /
    • 2001
  • Since Metallo-Porphyrin (MP) is very interesting compound due to its unique electronic and redox properties and it is also chemically and thermally stable, MP has been studied for potential memory and switching devices. In this study, thin films of 5,10,15,20-Tetrakis-Octadecyloxymethylphenyl-Porphyrin-Zn(II) were prepared by the Langmuir-Blodgett (LB) method and characterized by using UV/vis absorption spectroscopy and cyclic voltammetry. It was found that the proper transfer surface pressure for film deposition was 25 mN/m and the limiting area per molecule was 135 ${\AA}^2$/molecule. The current-voltage (I-V) characteristics of these films were investigated. Further details on the electrical properties of Porphyrin-Zn(II) derivative films will be discussed.

  • PDF

Electrochemistry Characterization of Metal Using Monoethanolamine as Corrosion Inhibitor (부식억제제로 모노에탄올아민을 사용한 금속의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • In this study, the current-voltage curves for metals were measured using cyclic voltammetry. The relationship between the electrochemical properties and surface states of metals were investigated by Scanning Electron Microscope (SEM). In cyclic voltammetry, we used a 3-electrode system for the electrochemical measurements. The measurement was conducted at the condition that consists of the first reduction from the initial potential to -1350 mV, continuous oxidation to 1650 mV, and last reduction to the initial potential. The scan rates were 50, 100, 150 and 250 mV/s. The results show the C-V characteristics of metals to be for an irreversible process, which was caused by the oxidation current from cyclic voltammogram, when monoethanolamine (MEA) was used as a corrosion inhibitor. When we used MEA as a corrosion inhibitor, the diffusion coefficient was decreased as the concentration of electrolyte was increased. In the SEM images of copper, we observed an increase of surface corrosion at the increased electrolyte concentration. Addition of $1.0{\times}10^{-3}M$ corrosion inhibitor MEA reduced the effect of corrosion prevention due to the relatively large diffusion coefficient at the electrolyte concentration of 0.1N.

Electrical and Chemical characteristics of Zn(II)-Porphyrin Langmuir-Blodgett(LB) Films (Zn(II)-Porphyrin LB막의 전기, 화학적 특성에 관한 연구)

  • Koo, Ja-Ryong;Lee, Ho-Sik;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.752-755
    • /
    • 2002
  • Since Metallo-Porphyrin (MP) is very interesting compound due to its unique electronic and redox properties and it is also chemically and thermally stable, MP has been studied for potential memory and switching devices. In this study, thin films of 5,10,15,20 - Tetrakis - Octadecyloxymethylphenyl - Porphyrin - Zn(II) (Zn-TPP) were prepared by the Langmuir-Blodgett (LB) method and characterized by using UV/vis absorption spectroscopy and cyclic voltammetry. It was found that the proper transfer surface pressure for film deposition was 25 mN/m and the limiting area per molecule was $135{\AA}^2$/molecule. The current-voltage (I-V) characteristics of these films were investigated.

  • PDF

Synthesis and Electrical Properties of Polypyrrole Nanotubules (Polypyrrole Nanotubules의 합성과 전기적 특성)

  • 조영재;김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.544-547
    • /
    • 2000
  • Polypyrrole (PPy) was chemically synthesized within the pores of nanoporous polycarbonate (PC) Particle Track-etched Membranes (nano-PTM). Hollow tubules are formed because polypyrrole initially deposits on the surface of the pores walls. By running successive syntheses, we have obtained wires (filled tubules). The redox property of PPy nanotubules was investigated by cyclic voltammetry. The redox potential was lowered as much as 0.5V vs. Ag/AgC1, comparing with electrosynthesized PPy film. It suggests that an electron hopping mechanism of PPy nanotubules was improved. Electric conductivity of PPy nanotubules and nanowire was evaluated. We obtained good electric conductivity of PPy nanotubules even in the neutral state. The conductivity and activation energy were $10^1$ order at the room temperature and 25.3 meV respectively.

  • PDF

A Study on Properties of OLEDs using $Zn(HPB)_2$ as hole blocking layer ($Zn(HPB)_2$를 Hole blocking layer로 이용한 OLEDs의 특성 연구)

  • Kim, Dong-Eun;Kim, Byoung-Sang;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.447-448
    • /
    • 2005
  • Recently, organic light emitting diodes(OLEDs) is widely used as one of the information display techniques. We synthesized 2-(2-hydroxyphenyl)benzoxazole($Zn(HPB)_2$). We studied the luminescent properties of OLEDs using $Zn(HPB)_2$. The ionization potential(IP) and the electron affinity(EA) of $Zn(HPB)_2$ investigated using cyclic-voltammetry(C-V). The JP, EA and Eg were 6.5eV, 3.0eV and 3.5eV, respectively. The PL and EL spectra of $Zn(HPB)_2$ were observed at the wavelength of 4S0nm. We used $Zn(HPB)_2$ as an emitting layer and hole blocking layer. At the experiment about hole blocking effect, we inserted $Zn(HPB)_2$ between emitting material layer(EML) and cathode, and hole transport layer(HTL) and emitting material layer(EML). We measured current density-voltage and luminance-voltage characteristics at room temperature.

  • PDF

Investigation of a Pseudo Capacitor with Polyacrylonitrile based Gel Polymer Electrolyte

  • Harankahawa, Neminda;Weerasinghe, Sandaranghe;Vidanapathirana, Kamal;Perera, Kumudu
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Pseudo capacitors belong to one group of super capacitors which are consisted with non carbon based electrodes. As such, conducting polymers and metal oxide materials have been employed for pseudo capacitors. Conducting polymer based pseudo capacitors have received a great attention due to their interesting features such as flexibility, low cost and ease of synthesis. Much work has been done using liquid electrolytes for those pseudo capacitors but has undergone various drawbacks. It has now been realized the use of solid polymer electrolytes as an alternative. Among them gel polymer electrolytes (GPEs) are in a key place due to their high ambient temperature conductivities as well as suitable mechanical properties. In this study, composition of a polyacrylonitrile (PAN) based GPE was optimized and it was employed as the electrolyte in a pseudo capacitor having polypyrrole (PPy) electrodes. GPE was prepared using ethylene carbonate (EC), propylene carbonate (PC), sodium thiocyanate (NaSCN) and PAN as starting materials. The maximum room temperature conductivity of the GPE was $1.92{\times}10^{-3}Scm^{-1}$ for the composition 202.5 PAN : 500 EC : 500 PC : 35 NaSCN (by weight). Performance of the pseudo capacitor was investigated using Cyclic Voltammetry technique, Electrochemical Impedance Spectroscopy (EIS) technique and Continuous Charge Discharge (GCD) test. The single electrode specific capacity (Cs) was found out to be 174.31 F/g using Cyclic Voltammetry technique at the scan rate of 10 mV/s and within the potential window -1.2 V to 1.2 V. The same value obtained using EIS was about 84 F/g. The discharge capacity ($C_d$) was 69.8 F/g. The capacity fade over 1000 cycles was rather a low value of 4%. The results proved the suitability of the pseudo capacitor for improving the performance further.