• 제목/요약/키워드: Cyclic carbonate

검색결과 63건 처리시간 0.021초

탄산 에틸렌계 용액 중에서 생성되는 흑연 음극 표면피막의 형상 및 저항에 미치는 충방전 속도의 영향 (Effects of Charge-discharge Rate on Morphology and Resistance of Surface Film on a Graphite Negative Electrode in an Ethylene Carbonate-based Solution)

  • 정순기;김보겸
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.179-185
    • /
    • 2013
  • The behavior of surface film formation was greatly dependent on the speed of potential cycling. In $LiClO_4$ / EC + DEC, cyclic voltammetry results showed that the peaks originated from surface film formation on graphite electrode at the high charge-discharge rate was shifted to the lower potentials as the charge-discharge rate decrease. This indicates that surface films with different morphology and thickness were formed by different charge-discharge rate. Transmission electron microscopy (TEM) results indicated that the properties such as thickness and morphology of the surface film were greatly affected by the charge-discharge rate. Electrochemical impedance spectroscopy (EIS) showed that the resistance of surface film was affected by the speed of potential cycling. In addition, the charge transfer resistance was also dependent on the charge-discharge rate indicating that the charge transfer reaction was affected by the nature of surface film. TEM and EIS results suggested that the chemical property as well as the physical property of the surface film was affected by the charge-discharge rate.

인산 처리된 표면 개질 음극 석탄계 피치의 전기화학적 특성 (Electrochemical Characteristics of Surface Modified CTP Anode by H3PO4 Treatment)

  • 이호용;이종대
    • 공업화학
    • /
    • 제27권4호
    • /
    • pp.415-420
    • /
    • 2016
  • 음극소재의 전기화학적 성능을 향상시키기 위해, 인산의 화학처리를 통한 헤테로 원자를 도입함으로써 석탄계 피치의 표면 개질을 수행하였다. 제조된 표면 개질 피치 음극소재의 물리적 특성은 XRD, FE-SEM, XPS 분석을 통하여 수행되었으며, 전기화학적 특성은 $LiPF_6$ (EC : DMC = 1 : 1 vol% + VC 3 wt%) 전해액을 사용하여 충 방전 테스트, 율속 테스트, 순환 전압 전류 테스트와 임피던스 테스트를 통해 조사하였다. 인산 3 wt% 첨가된 표면 개질 피치 전지의 초기 충전 용량 및 초기효율은 489 mAh/g, 82%로 다른 조성의 음극소재보다 우수하였다. 또한 3 wt% 인산으로 표면개질된 CTP 음극소재의 용량 보존율은 30사이클 후에 86%를 나타냈으며, 2 C/0.1 C에서 87%의 우수한 율속 특성을 보여줌을 알 수 있었다.

상온제련을 위한 네오디뮴의 비수계 전해 기초연구 (A Basic Study on Non-aqueous Electrolysis of Neodymium for Room-temperature Metallurgy)

  • 박제식;이철경
    • 자원리싸이클링
    • /
    • 제27권4호
    • /
    • pp.29-35
    • /
    • 2018
  • 본 연구에서는 네오디뮴의 상온제련의 가능성을 알아보기 위하여 비수계 전해액에서 네오디뮴의 전기화학적 레독스 거동을 조사하였다. 비수계 전해질로는 이온성액체인 $[C_4mim]PF_6$, $[C_4mim]Cl$, $[P_{66614}]PF_6$와 함께 네오디뮴 염에 대한 용해도가 높은 에탄올과 전기화학적 안정성이 높은 탄산염계 유기용액을 기반으로 한 혼합전해질을 대상으로 하였다. 다른 전해액에 비하여 ethylene carbonate(EC)/di-ethylene carbonate (DEC)의 경우가 네오디뮴의 전기화학적 레독스 특성이 우수한 것으로 판단되었으며, 물성향상을 위하여 에탄올을 첨가하는 실험을 수행하였다. 순수한 1 : 1 EC/DEC와 에탄올의 혼합 비율, 그리고 $NdCl_3$의 농도에 따른 이온전도도를 측정한 결과, 에탄올 함량 50 vol%, $NdCl_3$ 농도 0.5 M에서 전해질 특성이 가장 우수한 것으로 판단된다. 순환전위법과 선형전위법을 이용해 -3.8 V (vs. Pt-QRE)에서 네오디뮴의 환원반응으로 추정되는 전류피크가 관찰된다. 상온에서 -6 V (vs. Pt-QRE)에서 18시간 동안 정전압법으로 전해한 결과, 금속 네오디뮴이 전착되었음을 확인하였다.

Supercapacitive Properties of Carbon Electrode in an Electrolyte Containing a Newly Synthesized Two-Cation Salt

  • Cho, Won-Je;Yeom, Chul-Gi;Ko, Jang-Myoun;Lee, Yong-Min;Kim, Sang-Hern;Kim, Kwang-Man;Yu, Kook-Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권2호
    • /
    • pp.63-67
    • /
    • 2011
  • To examine the effects of a two-cation ionic liquid as an electrolyte component of a supercapacitor, 1,4-bis(3-methylimidazolium-1-yl)butane tetrafluoroborate ($MIBBF_4$), dissolved in propylene carbonate (PC) or acetonitrile (ACN), is newly synthesized and tested here for potential use as an electrolyte of capacitor. The $MIBBF_4$ salt exhibits higher ionic conductivity in ACN than in PC. The supercapacitive properties of capacitors containing an activated carbon electrode and various electrolytes are evaluated using cyclic voltammetry and electrochemical impedance spectroscopy. The capacitor adopting the $MIBBF_4$/ACN electrolyte shows the largest specific capacitance at low scan rates, whereas the capacitor adopting the 1-ethyl-3-methylimidazolium tetrafluoroborate $(EMIBF_4)$/ACN electrolyte shows the largest specific capacitance at high scan rates.

전해 중합에 따른 폴리피롤 필름의 캐페시턴스 특성 (Capacitance Properties of the Polypyrrole Films Electropolymerized in Different Electrolyte Solutions)

  • 박호철;노근애;김종휘;고장면
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.94-97
    • /
    • 2001
  • 정전류법으로 다양한 전해용액에서 제조한 Polypyrrole(PPy) 필름의 캐페시턴스 특성을 cyclic voltammetry 기법을 이용하여 조사하였다. 0.5M $LiClO_4/PC(propylene carbonate)/AN(acetonitrile)$ 혼합용액에 $10\%$의 수분을 첨가한 전해질에서 제조한 PPy필름이 가장 큰 401 F/g의 커패시턴스를 나타내었다. 또한 0.5M $LiClO_4\;AN에\;10\%$의 수분을 혼합한 전해질에서 제조한 PPy필름은 2000회의 충방전에서 초기용량의 $70\%$를 나타내었다. 제조된 PPy필름의 케폐시턴스 특성은 사용된 용매에 크게 의존함을 알 수 있었다.

Monitoring of Initial Stages of Atmospheric Zinc Corrosion in Simulated Acid Rain Solution under Wet-dry Cyclic Conditions

  • EL-Mahdy, Gamal A.;Kim, Kwang B.
    • Corrosion Science and Technology
    • /
    • 제3권6호
    • /
    • pp.251-256
    • /
    • 2004
  • Exposure of zinc samples in simulated acid rain solution (SARS) was investigated under a periodic wet-dry conditions using an AC impedance technique. The periodic wet and dry exposure consisted of the immersion of zinc samples in SARS for one hour followed by exposure to 7 hours drying at 60% RH. Phases of the corrosion products were indentified by X-ray diffraction (XRD). The influence of relative humdiity (RH), temperature, and surface inclination on the atmospheric corrosion of zinc is described. The reciprocal of polarization resistance (1/Rp) decreases rapidly during the initial stages then slowly and eventually attains a steady state as exposure time progresses. The average of reciprocal of polarization resistance per cycle, (ARPR) was calculated and found to decrease as number of exposure cycle increases. An increase of temperature enhances the corrsion rate of zinc. The values of ARPR, of a sample inclined at 30 o are lower than those for a sample oriented horizontally. The experiment result shows a pronounced dependence of reciprocal of polarization resistance on RH. Exposure in the presence of carbonate anions gives rise to more protective corrosion products than in nitrate anion solution. The corrosion mechanism during the initial stages of atmospheric zinc corrosion under wet-dry cyclic conditions is suggested.

Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries

  • Hong, Sukhyun;Jo, Hyuntak;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권4호
    • /
    • pp.116-120
    • /
    • 2015
  • Lithium diffusivity of fluorine-free and -doped tin-nickel (Sn-Ni) film model electrodes with improved interfacial (solid electrolyte interphase (SEI)) stability has been determined, utilizing variable rate cyclic voltammetry (CV). The method for interfacial stabilization comprises fluorine-doping on the electrode together with the use of electrolyte including fluorinated ethylene carbonate (FEC) solvent and trimethyl phosphite additive. It is found that lithium diffusivity of Sn is largely dependent on the fluorine-doping on the Sn-Ni electrode and interfacial stability. Lithium diffusivity of fluorine-doped electrode is one order higher than that of fluorine-free electrode, which is ascribed to the enhanced electrical conductivity and interfacial stabilization effect.

Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode

  • Kim, Kyungmin;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.187-191
    • /
    • 2014
  • This study reports on the influence of N-butyl-N-methylpyrrolidinium tetrafluoroborate ($PYR_{14}BF_4$) ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a common salt. Using the $PYR_{14}BF$ ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resistance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity meter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.

Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries

  • Nguyen, Cao Cuong;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권3호
    • /
    • pp.108-112
    • /
    • 2013
  • Lithium diffusivity of the silicon (Si)-based materials of Si-Cu and $SiO_x$ (x = 0.4, 0.85) with improved interfacial stability to electrolyte have been determined, using variable rate cyclic voltammetry with film model electrodes. Lithium diffusivity is found to depend on the intrinsic properties of anode material and electrolyte; the fraction of oxygen for $SiO_x$ (x = 0.4, 0.85), which is directly related to electrical conductivity, and the electrolyte type with different ionic conductivity and viscosity, carbonate-based liquid electrolyte or ionic liquid-based electrolyte, affect the lithium diffusivity.

Durability Improvement of Electrochromic Tungsten Oxides Films

  • Yang, J.Y.;Kim, J.W.;Kang, G.H.;K.D.Ko;Lee, G.D.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.157-157
    • /
    • 1999
  • Electrochromic tungsten oxide films were prepared by the electron beam deposition, and the dependence of the electrochemical stability and the optical properties on the titanium concentration, and on the annealing temperature, that was investigated. coloring and bleaching experiments were repeated by cyclic voltammetry in a propylene carbonate solution of LiClO4. Spectrometry was used to assess the stability of the transmittance in the degraded films. Tungsten oxide films with titanium contents of about 10~15 mol% were found to be most stable, undergoing the least degradation during the repeated for coloring and bleaching cycles. The reason for this small amount of degradation was the reduction of lithium ion trapping sites in the films, which results in an increased durability. Tungsten oxide films with titanium contents of about 20 mol% were annealed at 20$0^{\circ}C$ for 1 hour, and this results showed that durability of films were increased.

  • PDF