DOI QR코드

DOI QR Code

Supercapacitive Properties of Carbon Electrode in an Electrolyte Containing a Newly Synthesized Two-Cation Salt

  • Cho, Won-Je (Department of Chemistry, Dongguk University) ;
  • Yeom, Chul-Gi (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Ko, Jang-Myoun (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Lee, Yong-Min (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Kim, Sang-Hern (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Kim, Kwang-Man (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Yu, Kook-Hyun (Department of Chemistry, Dongguk University)
  • Received : 2011.05.27
  • Accepted : 2011.06.02
  • Published : 2011.06.30

Abstract

To examine the effects of a two-cation ionic liquid as an electrolyte component of a supercapacitor, 1,4-bis(3-methylimidazolium-1-yl)butane tetrafluoroborate ($MIBBF_4$), dissolved in propylene carbonate (PC) or acetonitrile (ACN), is newly synthesized and tested here for potential use as an electrolyte of capacitor. The $MIBBF_4$ salt exhibits higher ionic conductivity in ACN than in PC. The supercapacitive properties of capacitors containing an activated carbon electrode and various electrolytes are evaluated using cyclic voltammetry and electrochemical impedance spectroscopy. The capacitor adopting the $MIBBF_4$/ACN electrolyte shows the largest specific capacitance at low scan rates, whereas the capacitor adopting the 1-ethyl-3-methylimidazolium tetrafluoroborate $(EMIBF_4)$/ACN electrolyte shows the largest specific capacitance at high scan rates.

Keywords

References

  1. M. Ue, M. Takeda, T. Takahashi and M. Takehara, Electrocchem. Solid-State Lett., 5, A119 (2002). https://doi.org/10.1149/1.1472255
  2. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara and Y. Ito, J. Electrochem. Soc., 150, A499 (2003). https://doi.org/10.1149/1.1559069
  3. A. Lewandowski and A. Swiderska, Solid State Ionics, 161, 243 (2003). https://doi.org/10.1016/S0167-2738(03)00275-3
  4. F. J. Rodriguez-Nieto, T. Y. Morante-Catacora and C. R. Cabrera, J. Electroanal. Chem., 571, 15 (2004). https://doi.org/10.1016/j.jelechem.2004.04.008
  5. A. Balducci, U. Bardi, S. Caporali, M. Mastragostino and F. Soavi, Electrochem. Commun., 6, 566 (2004). https://doi.org/10.1016/j.elecom.2004.04.005
  6. D. L. Boxall and R. A. Osteryoung, J. Electrochem. Soc., 149, E185 (2002). https://doi.org/10.1149/1.1473191
  7. A. B. McEwen, H. L. Ngo, K. le Compte and J. L. Goldman, J. Electrochem. Soc., 146, 1687 (1999). https://doi.org/10.1149/1.1391827
  8. J. Fuller, A. C. Breda and R. T. Carlin, J. Electroanal. Chem., 459, 29 (1998). https://doi.org/10.1016/S0022-0728(98)00285-X
  9. T. Nishida, Y. Tashiro and M. Yamamoto, J. Fluorine Chem., 120, 135 (2003). https://doi.org/10.1016/S0022-1139(02)00322-6
  10. H. Nakajima and H. Ohno, Polymer, 46, 11499 (2005). https://doi.org/10.1016/j.polymer.2005.10.005
  11. N. A. Stolwijk and Sh. Obeidi, Electrochim. Acta, 54, 1645 (2009). https://doi.org/10.1016/j.electacta.2008.09.051
  12. S. Kim and S.-J. Park, Electrochim. Acta, 54, 3775 (2009). https://doi.org/10.1016/j.electacta.2009.01.070
  13. A. Lewandowski, M. Galinski, J. Phys. Chem. Solids, 65, 281 (2004). https://doi.org/10.1016/j.jpcs.2003.09.009
  14. Y. Nagao, Y. Nakayama, H. Oda and M. Ishikawa, J. Power Sources, 166, 595 (2007) . https://doi.org/10.1016/j.jpowsour.2007.01.068
  15. H. Zhang, G. Cao, Y. Yang and Z. Gu, Carbon, 46, 30 (2008). https://doi.org/10.1016/j.carbon.2007.10.023
  16. M. Egashira, Y. Matsuno, N. Yoshimoto and M. Morita, J. Power Sources, 195, 3036 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.046
  17. H. C. Garcia, L. F. C. de Oliveira, B. G. Nicolau, M. C. C. Ribeiro, J. Raman Spectr., 41, 1720 (2010). https://doi.org/10.1002/jrs.2628
  18. J. L. Anderson, J. Ding, T. Welton and D. W. Armstrong, J. Am. Chem. Soc., 124, 14247 (2002). https://doi.org/10.1021/ja028156h
  19. C. Laurence, P. Nicolet, M. T. Dalati, J. -L. M. Abboud and R. Notario, J. Phys. Chem., 98, 5807 (1994). https://doi.org/10.1021/j100074a003
  20. J. -L. M. Abboud and R. Notario, Pure Appl. Chem., 71, 645 (1999). https://doi.org/10.1351/pac199971040645
  21. J. Reiter, J. Vondrak, J. Michalek and Z. Micka, Electrochim. Acta, 52, 1398 (2006). https://doi.org/10.1016/j.electacta.2006.07.043
  22. S. S. Sarangi, W. Zhao, F. Muller-Plathe and S. Balasubramanian, Chem. Phy. Chem., 11, 2001 (2010).

Cited by

  1. Capacitive behaviour of thermally reduced graphene oxide in a novel ionic liquid containing di-cationic charge vol.193, 2014, https://doi.org/10.1016/j.synthmet.2014.04.006
  2. Novel composite membranes based on dicationic ionic liquid and polybenzimidazole mixtures as strategy for enhancing thermal and electrochemical properties of proton exchange membrane fuel cells applications at high temperature vol.41, pp.25, 2016, https://doi.org/10.1016/j.ijhydene.2016.04.245
  3. Feasible study of polypyrrole film in single and double cationic ionic liquids as novel electrolytes for energy storage applications vol.222, 2016, https://doi.org/10.1016/j.synthmet.2016.10.029
  4. Supercapacitive properties of activated carbon electrode in organic electrolytes containing single- and double-cationic liquid salts vol.89, 2013, https://doi.org/10.1016/j.electacta.2012.10.085