• Title/Summary/Keyword: Cycle-by-cycle variations

Search Result 286, Processing Time 0.037 seconds

A Study on the Combustion and Smoke Emission Characteristics of the Natural Aspiration Type Diesel Engine (자연흡기식 디젤 기관의 연소와 매연 배출 특성에 관한 실험적 연구)

  • 정우인;박찬국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.70-83
    • /
    • 1997
  • We made a selection of engine operating conditions in the natural aspiration type diesel engine as load and speed. The effects on the power, smoke emission and cylinder pressure characteristics of these variations in operating conditions were observed experimentally. Also, the smoke emission was predicted by using the Arrhenius equation and empirical equation of the smoke emission was made. At the same time, the correlations, between the combustion and smoke emission characteristic were examined. From the above results, it is clear that to prevent power dropping and to decrease exhaust fume whin the conditions are changed, one should improve the intake system. To do this, the best way is to lower the air-fuel mixing ratio. We found that the parameters of the indicated mean effective pressure, maximum pressure and its location and combustion duration, etc. change the motion in accordance with the conditions described above. Also, we found that the variation of the pressure cycle comes from an amplified variation of the early part of process. From the analysis of comparing combustion and exhaust fume, the exhaust fume is produced at the latter time of combustion and decreased when the combustion ratio is higher. Also, we developed a special formula which can predict the exhaust fume value according to the engine load and speed.

  • PDF

Experimental and numerical investigation on gas turbine blade with the application of thermal barrier coatings

  • Aabid, Abdul;Jyothi, Jyothi;Zayan, Jalal Mohammed;Khan, Sher Afghan
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.275-293
    • /
    • 2019
  • The engine parts material used in gas turbines (GTs) should be resistant to high-temperature variations. Thermal barrier coatings (TBCs) for gas turbine blades are found to have a significant effect on prolonging the life cycle of turbine blades by providing additional heat resistance. This work is to study the performance of TBCs on the high-temperature environment of the turbine blades. It is understood that this coating will increase the lifecycles of blade parts and decrease maintainence and repair costs. Experiments were performed on the gas turbine blade to see the effect of TBCs in different combinations of materials through the air plasma method. Three-layered coatings using materials INCONEL 718 as base coating, NiCoCrAIY as middle coating, and La2Ce2O7 as the top coating was applied. Finite element analysis was performed using a two-dimensional method to optimize the suitable formulation of coatings on the blade. Temperature distributions for different combinations of coatings layers with different materials and thickness were studied. Additionally, three-dimensional thermal stress analysis was performed on the blade with a commercial code. Results on the effect of TBCs shows a significant improvement in thermal resistance compared to the uncoated gas turbine blade.

A STUDY ON THERMAL ANALYSIS OF HORIZONTAL FILLET JOINTS BY CONSIDERING BEAD SHAPE IN GMA WELDING

  • Cho, Si-Hoon;Kim, Jae-Woong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.151-155
    • /
    • 2002
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF

Acclimation of maximum quantum yield of PSII and photosynthetic pigments of Panax quinquefolius L. to understory light

  • Fournier, Anick R.;T.A., John;Khanizadeh, Shahrokh;Gosselin, Andre;Dorais, Martine
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.347-356
    • /
    • 2008
  • Forest-grown American ginseng (Panax quinquefolius L.) is exposed to daily and seasonal light variations. Our goal was to determine the effect of understory light changes on the maximum quantum yield of photosystem II, expressed as $F_v/F_m$, and photosynthetic pigment composition of two-year-old plants. Understory light photon flux density and sunfleck durations were characterized using hemispherical canopy photography. Our results showed that understory light significantly affected the $F_v/F_m$ of American ginseng, especially during the initial development of the plants when light levels were the highest, averaging 28 mol $m^{-2}d^{-1}$. Associated with low $F_v/F_m$ during its initial development, American ginseng had the lowest levels of epoxidation state of the xanthophyll cycle of the season, suggesting an active dissipation of excess light energy absorbed by the chlorophyll pigments. As photon flux density decreased after the deployment of the forest canopy to less than 10 mol $m^{-2}d^{-1}$, chlorophyll a/b decreased suggesting a greater investment in light harvesting pigments to reaction centers in order to absorb the fleeting light energy.

A Study on the Boiling Heat Transfer Characteristics Using Loop Type Thermosyphon

  • HAN, Kyu-il;CHO, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.257-262
    • /
    • 2016
  • Flexible two-phase thermosyphons are devices that can transfer large amounts of heat flux with boiling and condensation of working fluid resulting from small temperature differences. A flexible two-phase thermosyphon consists of a evaporator, an insulation unit, and a condenser. The working fluid inside the evaporator is evaporated by heating the evaporator in the lower part of the flexible two-phase thermosyphon and the evaporated steam rises to the condenser in the upper part to transfer heat in response to the cooling fluid outside the tube. The resultant condensed working fluid flows downward along the inside surface of the tube due to gravity. These processes form a cycle. Using R134a refrigerant as the working fluid of a loop type flexible two-phase thermosyphon heat exchanger, an experiment was conducted to analyse changes in boiling heat transfer performances according to differences in the temperature of the oil for heating of the evaporator, the temperature variations of the refrigerant, and the mass flows. According to the results of the present study, the circulation rate of the refrigerant increased and the pressure in the evaporator also increased proportionally as the temperature of the oil in the evaporator increased. In addition, the heat transfer rate of the boiler increased as the temperature of the oil in the evaporator increased.

Detection of Water Bodies from Kompsat-5 SAR Data (Kompsat-5 SAR 자료를 이용한 수체 탐지)

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2016
  • Detection of water bodies in land surface is an essential part of disaster monitoring, such as flood, storm surge, and tsunami, and plays an important role in analyzing spatial and temporal variation of water cycle. In this study, a quantitative comparison of different thresholding-based methods for water body detection and their applicability to Kompsat-5 SAR data were presented. In addition, the effect of speckle filtering on the detection result was analyzed. Furthermore, the variations of threshold values by the proportion of the water body area in the whole image were quantitatively evaluated. In order to improve the binary classification performance, a new water body detection algorithm based on the bimodality test and the majority filtering is presented.

Site Monitoring and investigation plan for LILW disposal (방사성폐기물 처분장 부지감시 계획)

  • Baek, Seung-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.369-385
    • /
    • 2008
  • The purpose of site monitoring and investigation is to offer the basic data for performance assessment and design of low- and intermediate-level radioactive waste(LILW) disposal facility by monitoring variations of main site properties continually in the stage of pre-operation, operation and post-closure. Main contents of site monitoring are as follows. In the stage of pre-operation, suitability evaluation for disposal facility and monitoring for constructing and operating disposal facility are performed. In the operation period, monitoring is performed including surroundings to research the influence to environment with operating disposal facility and operate safely and efficiently. In the post-closure period, monitoring about major site properties is performed to prevent the effect of radioactive waste from disposal facility and to secure long-term safety.

  • PDF

HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

  • Kim, Byung Koo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.961-968
    • /
    • 2013
  • The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP) are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia), and a much larger one at Barakah (4X1,400 MWe PWR from Korea). Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

A Study on DC-DC Power Supply for Maglev (자기부상열차용 DC-DC 전원장치에 관한 연구)

  • Chung, Choon-Byung;Cho, Ju-Hyun;Jho, Jung-Min;Jeon, Kee-Young;Lee, Sang-Chip;Oh, Bong-Hwan;Lee, Hoon-Gu;Han, Kyung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.347-352
    • /
    • 2004
  • The author present a modified multi-loop algorithm including feedforward for controlling a 55kW step down chopper in the power supply of Maglev. The control law for the duty cycle consists of three terms. The first is the feedforward term which compensates for variations in the input voltage. The second term consists of the difference between the slowly moving inductor current and output current. The third term consists of proportional and integral terms involving the perturbation in the output voltage. This perturvation is derived by subtracting the desired output voltage from the actual output voltage. The proportional and integral action stabilizes the system and minimizes output voltage error. In order to verify the validity of the proposed multi-loop controller, simulation study was tried using Matlab simulink.

  • PDF

A Study on DC-DC Power Supply with a Multi-loop Controller (다중 제어루프에 의한 DC-DC 전원장치에 관한 연구)

  • Jho, J.H.;Chung, J.H.;Jho, J.M.;Kim, K.D.;Lee, S.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1262-1264
    • /
    • 2003
  • The author Present a modified multiloop algorithm including feedforward for controlling a 45kW step down chopper in the power supply of Maglev. The control law for the duty cycle consists of three terms. The first is the feedforward term which compensates for variations in the input voltage. The second term consists of the difference between the slowly moving inductor current and output current. The third term consists of proportional and integral terms involving the perturbation in the output voltage. This perturvation is derived by subtracting the desired output voltage from the actual output voltage. The proportional and integral action stabilizes the system and minimizes output voltage error. To verify the validity of the proposed multiloop controller, simulation study was tried using Matlab/sirnulink.

  • PDF