DOI QR코드

DOI QR Code

Detection of Water Bodies from Kompsat-5 SAR Data

Kompsat-5 SAR 자료를 이용한 수체 탐지

  • Park, Sang-Eun (Department of Energy and Mineral Resources Engineering, Sejong University)
  • 박상은 (세종대학교 에너지자원공학과)
  • Received : 2016.09.13
  • Accepted : 2016.10.20
  • Published : 2016.10.31

Abstract

Detection of water bodies in land surface is an essential part of disaster monitoring, such as flood, storm surge, and tsunami, and plays an important role in analyzing spatial and temporal variation of water cycle. In this study, a quantitative comparison of different thresholding-based methods for water body detection and their applicability to Kompsat-5 SAR data were presented. In addition, the effect of speckle filtering on the detection result was analyzed. Furthermore, the variations of threshold values by the proportion of the water body area in the whole image were quantitatively evaluated. In order to improve the binary classification performance, a new water body detection algorithm based on the bimodality test and the majority filtering is presented.

육상의 수체를 탐지하는 것은 홍수, 태풍, 지진해일과 같은 재해 모니터링에 있어 핵심적인 사항이며, 습지, 빙하 등 지표 수자원의 시 공간적 변화를 파악하는데 중요한 역할을 한다. 본 연구에서는 Kompsat-5 SAR 영상으로부터 육상의 수체를 탐지하기 위하여 임계값에 기반한 접근방법의 적용성을 분석하고, 다양한 임계값 설정 기법의 탐지 성능을 평가하였다. 또한 SAR 영상의 스펙클 필터링이 임계값 설정에 미치는 영향을 분석하였으며, 영상에서 수체가 차지하는 비율에 따른 탐지 성능의 변화에 대한 정량적인 평가를 수행하였다. 추가적으로 탐지 성능을 향상시키기 위해 히스토그램의 bimodality 검정과 majority filtering 처리를 활용하는 새로운 알고리즘을 제안하였다. 세종시 지역의 사례의 경우 제안된 알고리즘을 통해 최종적으로 약 96%의 탐지율과 0.3%의 오탐지율로 수체를 탐지할 수 있음을 보였다.

Keywords

References

  1. Bartsch A., R. Kidd, C. Pathe, W. Wagner, and K. Scipal, 2007. Satellite radar imagery for monitoring inland wetlands in boreal and sub-arctic environments, Journal of Aquatic Conservation: Marine and Freshwater Ecosystems, 17: 305-317. https://doi.org/10.1002/aqc.836
  2. Bovolo, F. and L. Bruzzone, 2007. A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment, IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1658-1670. https://doi.org/10.1109/TGRS.2007.895835
  3. Bruzzone, L. and D.F. Prieto, 2000. Automatic analysis of the difference image for unsupervised change detection, IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1171-1182. https://doi.org/10.1109/36.843009
  4. Dempster, A.P., N.M. Laird, and D.B. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series(B), 39(1): 1-8.
  5. Foulkes, S.B., and D.M. Dooth, 2000. Ship detection in ERS and Radarsat imagery using a self-organising Kohonen neural network, Proc. of Nova Scotia Conference on Ship Detection in Coastal Waters, Digby, NS, Canada.
  6. Freeman, J.B., and R. Dale, 2013. Assessing bimodality to detect the presence of a dual cognitive process. Behavior Research Methods, 45(1): 83-97. https://doi.org/10.3758/s13428-012-0225-x
  7. Goldberg, M., D. Goodenough, and S. Shlien, 1975. Classification methods and error estimation for multispectral scanner data, Proc. of 3rd Canadian Symposium on Remote Sensing, September, Edmonton, Alberta, Canada.
  8. Hartigan, J.A., and P.M. Hartigan, 1985. The dip test of unimodality, The Annals of Statistics, 13: 70-84. https://doi.org/10.1214/aos/1176346577
  9. Kittler, J. and J. Illingworth, 1986. Minimum error thresholding, Pattern Recognition, 19: 41-47. https://doi.org/10.1016/0031-3203(86)90030-0
  10. Kuenzer, C., H. Guo, J. Huth, P. Leinenkugel, X. Li, and S. Dech, 2013. Flood mapping and flood dynamics of the Mekong Delta: ENVISAT-ASAR-WSM based time series analyses, Remote Sensing, 5: 687-715. https://doi.org/10.3390/rs5020687
  11. Lee, J.S., 1981. Speckle analysis and smoothing of synthetic aperture radar images, Computer Graphics and Image Processing, 17: 24-32. https://doi.org/10.1016/S0146-664X(81)80005-6
  12. Lopes, A., R. Touzi, E. Nezry, 1990. Adaptive speckle filters and scene heterogeneity, IEEE Transactions on Geoscience and Remote Sensing, 28: 992-1000. https://doi.org/10.1109/36.62623
  13. Martinis, S., J. Kersten, and A. Twele, 2015. A fully automated TerraSAR-X based flood service, ISPRS Journal of Photogrammetry and Remote Sensing, 104: 203-212. https://doi.org/10.1016/j.isprsjprs.2014.07.014
  14. Martinis, S., A. Twele, and S. Voigt, 2009. Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data, Natural Hazards and Earth System Sciences, 9: 303-314. https://doi.org/10.5194/nhess-9-303-2009
  15. Mechler, F., 2002. Hartigan's dip Statistic. available online at: http://nicprice.net/diptest/.
  16. Otsu, N., 1979. A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9: 62-66. https://doi.org/10.1109/TSMC.1979.4310076
  17. Park, S.-E., Y. Yamaguchi, and D. Kim, 2013. Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR, Remote Sensing of Environment, 132(5): 212-220. https://doi.org/10.1016/j.rse.2013.01.018
  18. Pulvirenti, L., M. Chini, N. Pierdicca, L. Guerriero, and P. Ferrazzoli, 2011. Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation, Remote Sensing of Environment, 115: 990-1002. https://doi.org/10.1016/j.rse.2010.12.002
  19. Schumann, G., G. Di Baldassarre, D. Alsdorf, and P.D. Bates, 2010. Near real-time flood wave approximation on large rivers from space: Application to the River Po, Italy, Water Resources Research, 46: 1-8.
  20. Ulaby, F.T., R.K. Moore, and A.K. Fung, 1982. Microwave Remote Sensing: Active and Passive, Vol. II, Addison-Wesley, Advanced Book Program, Reading, MA, USA.

Cited by

  1. 다목적실용위성 영상처리 및 활용 vol.33, pp.6, 2016, https://doi.org/10.7780/kjrs.2017.33.6.3.1
  2. 다목적실용위성 영상자료 활용 현황 vol.34, pp.6, 2016, https://doi.org/10.7780/kjrs.2018.34.6.3.1
  3. 다중시기 위성 레이더 영상을 활용한 변화탐지 기술 리뷰 vol.35, pp.5, 2016, https://doi.org/10.7780/kjrs.2019.35.5.1.10
  4. Rapid Change Detection of Flood Affected Area after Collapse of the Laos Xe-Pian Xe-Namnoy Dam Using Sentinel-1 GRD Data vol.12, pp.12, 2020, https://doi.org/10.3390/rs12121978