• Title/Summary/Keyword: Cycle-by-cycle variations

Search Result 286, Processing Time 0.028 seconds

Solubility of Mixed Lanthanide Hydroxide and Oxide Solid Solutions

  • Moniruzzaman, Mohammad;Kobayashi, Taishi;Sasaki, Takayuki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.353-366
    • /
    • 2021
  • The solubilities of different multicomponent lanthanide oxide (Ln2O3) solid solutions including binary (Ln1 and Ln2 = La, Nd, Eu, or Tm), ternary (Ln1, Ln2, and Ln3 = La, Nd, Eu, or Tm), and higher systems (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were studied after aging for four weeks at 60℃. Our recent study revealed that the phase transformations in binary ((La, Nd) and (La, Eu)) and ternary (La, Nd, Eu) systems are responsible for the formation of (La, Nd)(OH)3, (La, Eu)(OH)3, and (La, Nd, Eu)(OH)3 solid solutions, respectively. The variations in the mole fractions of La3+, Nd3+, and Eu3+ in the sample solutions of these hydroxide solid solutions indicated that a thermodynamic equilibrium might account for the apparent La, Nd, and Eu solubilities. Conversely, the binary and ternary systems containing Tm2O3 as the heavy lanthanide oxide retained the oxide-based solid solutions, and their solubility behaviors were dominated by their congruent dissolutions. In the higher multicomponent system, the X-ray diffraction patterns of the solid phases, before and after contact with the aqueous phase indicated the formation of a stable oxide solid solution and their solubility behavior was explained by its congruent dissolution.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

Soil Respiration Characteristics in Pinus densiflora Forests in Republic of Korea: A Case of Mt. Jeombongsan, Mt. Namsan, and Mt. Jirisan (2009~2010) (우리나라 소나무림의 토양호흡 특성: 점봉산, 남산, 지리산 사례 연구 (2009~2010))

  • Jae-Ho Lee;Young-Ju Yu;Sang-Hun Lee;Man-Seok Shin;Jae-Seok Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • This study measured soil respiration in pine forests dominated by Pinus densiflora in Mt. Jeombong, Mt. Namsan, Mt. Jirisan in Republic of Korea from 2009 to 2010. The seasonal variations, along with temperature and soil moisture content, were measured to understand the characteristics at each site. Soil respiration was highest in summer and autumn, closely influenced by the increase in soil temperature. Throughout the measurement period, soil respiration ranged from 205.6 to 312.2 mg CO2 m-2 h-1, with Mt. Namsan showing the highest values and Mt. Jirisan the lowest. A strong correlation was observed between soil respiration and soil temperature, with Q10 values ranging from 2.5 to 3.0. Precipitation significantly affected soil moisture content, and although it appeared to influence soil respiration, no significant correlation was found.

CRISPR base editor-based targeted random mutagenesis (BE-TRM) toolbox for directed evolution

  • Rahul Mahadev Shelake;Dibyajyoti Pramanik;Jae-Yean Kim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • Directed evolution (DE) of desired locus by targeted random mutagenesis (TRM) tools is a powerful approach for generating genetic variations with novel or improved functions, particularly in complex genomes. TRM-based DE involves developing a mutant library of targeted DNA sequences and screening the variants for the desired properties. However, DE methods have for a long time been confined to bacteria and yeasts. Lately, CRISPR/Cas and DNA deaminase-based tools that circumvent enduring barriers such as longer life cycle, small library sizes, and low mutation rates have been developed to facilitate DE in native genetic environments of multicellular organisms. Notably, deaminase-based base editing-TRM (BE-TRM) tools have greatly expanded the scope and efficiency of DE schemes by enabling base substitutions and randomization of targeted DNA sequences. BE-TRM tools provide a robust platform for the continuous molecular evolution of desired proteins, metabolic pathway engineering, creation of a mutant library of desired locus to evolve novel functions, and other applications, such as predicting mutants conferring antibiotic resistance. This review provides timely updates on the recent advances in BE-TRM tools for DE, their applications in biology, and future directions for further improvements.

Observed and Simulated Seasonal Salinity in The Tropical Atlantic ocean, and its Relationship with Freshwater (관측과 모델에서 얻어진 열대 대서양에서의 계절별 염분 분포 및 담수 효과)

  • YOO, JUNG-MOON
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.290-302
    • /
    • 1992
  • Seasonal variations of salinity in the upper 500 m of the tropical Atlantic Ocean are examined, based on both climatological seasonal salinity observations and numerical simulations with hydrological forcing. The seasonal cycle of sea surface salinity has strong seasonal variations caused by shifts of the freshwater surplus zone (i.e. the intertropical convergence zone) and the river outflow. The climatological seasonal salinity in this analysis concurs with other independent observations described by Default (1981) and Levitus (1982), but provides more consistent patterns with temperature structure. The effect of salinity on density below 100 m depth in the tropical Atlantic is negligible compared to tat of temperature, which in the mixed layer salinity affects density significantly. The systematic difference between observed and simulated salinity is found to be the fact that the simulated salinity is higher in the subtropics than the observed salinity, and possible sources about the difference are also discussed.

  • PDF

Analysis of Dynamic Characteristics of a Piston for a Linear Compressor Considering Changes in Groove Geometry (리니어 압축기에서 그루브 형상 변화에 따른피스톤의 동특성 해석)

  • Noh, Sangwan;Oh, Wonsik;Park, Kyeongbae;Rhim, Yoonchul
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.221-228
    • /
    • 2015
  • It is possible to prevent a piston from contacting the cylinder by changing the shape of the piston or by applying micro-textures, such as micro-grooves or micro-holes, over the piston surface. Usually, the minimum radial clearance reaches its minimum value at the beginning of the suction stroke because the pressure around the piston is low and almost axisymmetric such that the net pressure force on the piston is not sufficiently high to support the piston from touching the cylinder. In this study, we apply a series of saw-tooth-shaped grooves on the piston surface, and numerically investigate the effects of groove depth, groove angle, and the number of grooves with radial clearance variations using a finite difference method. We conduct a dynamic analysis of the piston for various changes in groove geometries to obtain the minimum radial clearance variation for the entire compression cycle. The minimum radial clearance increases while friction loss decreases when we apply the series of saw-tooth-shaped grooves on the piston. In addition, we analyze the impact of the change in the groove shape variable due to changes in radial clearance. Leakage variations are relevant to radial clearance, but have almost no effect on the groove parameters.

Development of an Enzyme-linked Immunosorbent Assay Using Vitellin for Vitellogenin Measurement in the Pale Chub, Zacco platypus

  • Lim, Eun-Suk;Lee, Eun Hee;Kim, Myung Hee;Han, Chang-Hee;Lee, Sung-Kyu;Kim, Jiwon
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.16.1-16.8
    • /
    • 2013
  • Objectives Fish vitellogenin (VTG) is produced in the female liver during oogenesis through the estradiol cycle and produced in the male liver by endocrine disrupting chemicals (EDCs) such as alkylphenols. In this study, we propose that the VTG concentration in the pale chub could be detected using monoclonal antibodies and polyclonal antibodies against vitellin (Vn) in a VTG enzyme-linked immunosorbent assay (ELISA) system. Methods Monoclonal antibodies and polyclonal antibodies were produced using the Vn extracted from the matured ovum of the ovary. The VTG was extracted from the plasma of the male pale chub. The Vn and VTG were confirmed by measuring the molecular weight of their proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the specificity of the antibodies was checked through western blotting methods. The assay system was validated with respect to optimal assay concentrations, specificity, recovery, and intra- and inter-assay variations. Results The Vn consisted of two protein bands with apparent molecular weights of 64 and 37 kDa. The SDS-PAGE indicated protein weights of 146 and 77 kDa in the VTG. The assay range was 15.6 ng/mL to 2,000 ng/mL, and the value of the intra- and inter-assay variations were within 10.0% and 14.7%, respectively. The recovery rate was $99.5{\pm}5.5%$. Conclusions A sandwich ELISA was developed that could be used to qualify the VTG of pale chub in screening for EDCs. Pale chub is an ideal species for observing estrogen activity in the environment because of its extensive habitat and extensive food chain. The ELISA developed here would be more favorable than those for other species for determining the effect of long-term food chain accumulation of EDCs in aquatic environments.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Glottal Characteristics of Word-initial Vowels in the Prosodic Boundary: Acoustic Correlates (운율경계에 위치한 어두 모음의 성문 특성: 음향적 상관성을 중심으로)

  • Sohn, Hyang-Sook
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.47-63
    • /
    • 2010
  • This study provides a description of the glottal characteristics of the word-initial low vowels /a, $\ae$/ in terms of a set of acoustic parameters and discusses glottal configuration as their acoustic correlates. Furthermore, it examines the effect of prosodic boundary on the glottal properties of the vowels, seeking an account of the possible role of prosodic structure based on prosodic theory. Acoustic parameters reported to indicate glottal characteristics were obtained from the measurements made directly from the speech spectrum on recordings of Korean and English collected from 45 speakers. They consist of two separate groups of native Korean and native English speakers, each including both male and female speakers. Based on the three acoustic parameters of open quotient (OQ), first-formant bandwidth (B1), and spectral tilt (ST), comparisons were made between the speech of males and females, between the speech of native Korean and native English speakers, and between Korean and English produced by native Korean speakers. Acoustic analysis of the experimental data indicates that some or all glottal parameters play a crucial role in differentiating the speech groups, despite substantial interspeaker variations. Statistical analysis of the Korean data indicates prosodic strengthening with respect to the acoustic parameters B1 and OQ, suggesting acoustic enhancement in terms of the degree of glottal abduction and the glottal closure during a vibratory cycle.

  • PDF

A Study of the Thermal Analysis of Horizontal Fillet Joints by Considering the Bead Shape in GMA Welding (GMA 용접에서 비드형상을 고려한 수평필릿용접부의 온도해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.71-78
    • /
    • 2001
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF