DOI QR코드

DOI QR Code

Soil Respiration Characteristics in Pinus densiflora Forests in Republic of Korea: A Case of Mt. Jeombongsan, Mt. Namsan, and Mt. Jirisan (2009~2010)

우리나라 소나무림의 토양호흡 특성: 점봉산, 남산, 지리산 사례 연구 (2009~2010)

  • Jae-Ho Lee (Ecological Information Team, National Institute of Ecology) ;
  • Young-Ju Yu (Climate Change Response Team, Korea Agriculture Technology Promotion Agency) ;
  • Sang-Hun Lee (Ecological Information Team, National Institute of Ecology) ;
  • Man-Seok Shin (Ecological Information Team, National Institute of Ecology) ;
  • Jae-Seok Lee (Department of Biological Sciences, Konkuk University)
  • 이재호 (국립생태원 생태정보팀) ;
  • 유영주 (한국농업기술진흥원 기후변화대응팀) ;
  • 이상훈 (국립생태원 생태정보팀) ;
  • 신만석 (국립생태원 생태정보팀) ;
  • 이재석 (건국대학교 생명과학특성학과)
  • Received : 2023.11.01
  • Accepted : 2023.12.29
  • Published : 2023.12.31

Abstract

This study measured soil respiration in pine forests dominated by Pinus densiflora in Mt. Jeombong, Mt. Namsan, Mt. Jirisan in Republic of Korea from 2009 to 2010. The seasonal variations, along with temperature and soil moisture content, were measured to understand the characteristics at each site. Soil respiration was highest in summer and autumn, closely influenced by the increase in soil temperature. Throughout the measurement period, soil respiration ranged from 205.6 to 312.2 mg CO2 m-2 h-1, with Mt. Namsan showing the highest values and Mt. Jirisan the lowest. A strong correlation was observed between soil respiration and soil temperature, with Q10 values ranging from 2.5 to 3.0. Precipitation significantly affected soil moisture content, and although it appeared to influence soil respiration, no significant correlation was found.

Keywords

Acknowledgement

본 논문은 국립생태원의 "EcoBank 유지관리 및 기능개선(NIE-고유연구-2023-01)"에 의해 지원되었습니다.

References

  1. Bekku, Y., H. Koizumi, T. Nakadai and H. Iwaki. 1995. Measurement of soil respiration using closed chamber method: An IRGA technique. Ecology Research 10: 369-373. https://doi.org/10.1007/BF02347863
  2. Buchmann, N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry 32: 1625-1635. https://doi.org/10.1016/S0038-0717(00)00077-8
  3. Chapman, S.B. 1979. Some interrelationships between soil and root respiration in lowland Calluna heathland in southern England. Ecology 67: 1-20. https://doi.org/10.2307/2259333
  4. Dai, W. and Y. Huang. 2006. Relation of soil organic matter concentration to climate and altitude in zonal soils of China. CATENA 65(1): 87-94. https://doi.org/10.1016/j.catena.2005.10.006
  5. Davis, R.B. 1974. Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnology and Oceanography 19(2): 342-346. https://doi.org/10.4319/lo.1974.19.2.0342
  6. Fang, J., K. Zhao and S. Liu. 1998. Factors affecting soil respiration in reference with temperature's role in the global scale. Chinese Geographical Science 8: 246-255. https://doi.org/10.1007/s11769-997-0018-9
  7. Hunt, J.E., F.M. Kelliher, T.M. McSeveny and J.N. Byers. 2002. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology 111: 65-82. https://doi.org/10.1016/S0168-1923(02)00006-0
  8. Hur, T. and S. Joo. 2002. Comparison of Soil Physical and Chemical Properties between Coniferous and Deciduous forests in Mt. Palgong. Agriculture Research Bulletin Kyungpook National University 20: 39-47.
  9. IPCC. 2021. Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press.
  10. Janssens, I.A., A. Freibauer, P. Ciais, P. Smith, G.-J. Nabuurs, G. Folberth, B. Schlamadinger, R.W.A. Hutjes, R. Ceulemans, E.-D. Schulze, R. Valentini and A. J. Dolman. 2003. Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions. Science 300: 1538-1542. https://doi.org/10.1126/science.1083592
  11. Jung, S., D. Kwon, C. Park and S. Kim. 2015. Appropriate sampling points and frequency of CO2 measurements for soil respiration analysis in a pine (Pinus densiflora) forest. Animal Cells and Systems 19(5): 332-338. https://doi.org/10.1080/19768354.2015.1069209
  12. Kim, C. 2006. Soil carbon cycling and soil CO2 efflux in a Red Pine (Pinus densiflora) stand. Journal of Ecology and Field Biology 29: 23-27. https://doi.org/10.5141/JEFB.2006.29.1.023
  13. Kim, C. and J. Jeong. 2001. Change of aboveground carbon storage in a Pinus rigida stand in Gwangnung, Gyunggi-do, Korea. Journal of Korean Forest Society 90: 774-780.
  14. Knapp, A.K., S.L. Conard and J.M. Blair. 1998. Determinants of soil CO2 flux from a sub-humid grassland: Effect of fire and fire history. Ecological Applications 8(3): 760-770.
  15. Kwon, K., B. Han, S. Park and J. Choi. 2012. The Improvement Effect of Pinus densiflora Forest Disturbed by Human Trampling in the Solbat Neighborhood Park, Gangbuk-gu, Seoul. Journal of the Korean Institute of Landscape Architecture 40(5): 148-159. https://doi.org/10.9715/KILA.2012.40.5.148
  16. Lee, E., S. Lee, J. Park, E. Kim, Y. Hong, S. Lee and Y. Han. 2020. Correlation between a soil respiration and environmental factors, air temperature and precipitation in Pinus densiflora community in Namsan and measuring on an unrban forest management. Journal of Korean Society of Forest Science 109(2): 136-144.
  17. Lee, E.H. 2009. Analysis of soil carbon flux using the automatic long term measurement of soil respiration in the temperate deciduous forest at Gwangneung. M. S. Thesis, Konkuk University (in Korean with English abstract).
  18. Lee, E.H., J.H. Lim and J.S. Lee. 2010. A review on soil respiration measurement and its application in Korea. Korean Journal of Agricultural and Forest Meteorology 12(4): 264-276. https://doi.org/10.5532/KJAFM.2010.12.4.264
  19. Lee, J.H. 2008. Effect of carbonization of agricultural product on increasing of carbon sequestration in red pepper soil. M. S. Thesis. Konkuk University (in Korean with English abstract).
  20. Lee, J.H., J.S. Lee, Y.M. Chun, N.Y. Chae and J.S. Lee. 2013. Discussion of soil respiration for understanding ecosystem carbon cycle in Korea. The Korean Society of Limnology 46(2): 310-318. https://doi.org/10.11614/KSL.2013.46.2.310
  21. Lee, M.S. 2003. Method for assessing forest carbon sinks by ecological processing-based approach a case study for Takayama station, Japan. The Korean Journal of Ecology 26: 289-296. https://doi.org/10.5141/JEFB.2003.26.5.289
  22. Lee, Y.Y. and H.T. Moon. 2001. A Study on the Soil Respiration in a Quercus acutissima Forest. Journal of Ecology and Field Biology 24: 141-147.
  23. Lloyd, J. and J.A. Taylor. 1994. On the temperature dependence of soil respiration. Functional Ecology 8: 315-323. https://doi.org/10.2307/2389824
  24. Mariko, S., N. Nishimura, W. Mo, Y. Matsui, T. Kibe and H. Koizumi. 2000. Winter CO2 flux from soil and snow surfaces in a cool-temperature deciduous forest, Japan. Ecological Research 15: 363-372.
  25. Moon, H., S. Jung and S. Hong. 2001. Rate of soil respiration at Black Locust(Robinia pseudo-acacia) Stands in Jinju area. Korean Journal of Ecology 24(6): 371-376.
  26. Moon, H.S. 2004. Soil respiration in Pinus densiflora, Quercus variabilis and Platycarya strobilacea stands in JinJu, Gyeongnam Province. Korean Journal of Ecology 27: 87-92. https://doi.org/10.5141/JEFB.2004.27.2.087
  27. Park, G.S. 1997. Effects of fertilization and clone on aboveground and soil carbon storages in a Willow (Salix spp.) bioenergy plantation. Journal of Korean Forest Society 86: 177-185.
  28. Park, G.S. 1999. Aboveground and Soil Carbon Storages in Quercus mongolica and Quercus variabilis Natural Forest Ecosystems in Chungju. Journal of Korean Forest Society 88: 93-100.
  29. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42. https://doi.org/10.1038/nature01286
  30. Pyo, J.H., S.U. Kim and H.T. Mun. 2003. A study on the Carbon Budget in Pinus koreansis of Plantation. Journal of Ecology and Field Biology 26: 129-134. https://doi.org/10.5141/JEFB.2003.26.3.129
  31. Raich, J.W. and W.H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44: 81-99. https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x
  32. Rayment, M.B. and P.G. Jarvis. 2000. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology and Biochemistry 32(1): 35-45. https://doi.org/10.1016/S0038-0717(99)00110-8
  33. Schlentner, R.E. and K. Van Cleve. 1985. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Canadian Journal of Forest Research 15: 97-106. https://doi.org/10.1139/x85-018
  34. Scott-Denton, L.E., K.L Sparks and R.K Monson. 2003. Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry 35(4): 525-534. https://doi.org/10.1016/S0038-0717(03)00007-5
  35. Shanks, R.E. and J.S. Olson. 1961. First-Year Breakdown of Leaf Litter in Southern Appalachian Forests. Science 134: 194-195. https://doi.org/10.1126/science.134.3473.194
  36. Singh, J.S. and S.R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review 43: 449-529. https://doi.org/10.1007/BF02860844
  37. Song, X., C. Peng, Z. Zhao, Z. Zhang, B. Guo, W. Wang, H. Jiang, and Q. Zhu. 2014. Quantification of soil respiration in forest ecosystems across China. Atmospheric Environment 94: 546-551. https://doi.org/10.1016/j.atmosenv.2014.05.071
  38. Sulzman, E., J. Brant, R.D. Bowden and K. Lajtha. 2005. Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73: 231-256. https://doi.org/10.1007/s10533-004-7314-6
  39. Tian, G., B.T. Kang and L. Brussaard. 1992. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions-Decomposition and nutrient release. Soil Biology and Biochemistry 24(10): 1051-1060. https://doi.org/10.1016/0038-0717(92)90035-V
  40. Tyurin, I.V. 1931. A New Modification of Determining Soil Organic Matter by Means of Chromic Acid. Pochvovedenie 26: 36-47.
  41. Widen, B. 2002. Seasonal variation in forest-floor CO2 exchange in a Swedish coniferous forest. Agricultural and Forest Meteorology 111(4): 283-297. https://doi.org/10.1016/S0168-1923(02)00026-6
  42. Yang, K., H. Namkung, J. Kim, M. Han and J. Shim. 2018. Carbon Budget of Pine Forest in Serpentine Area. Korean Journal of Environment and Ecology 32(6): 676-685. https://doi.org/10.13047/KJEE.2018.32.6.676