Acknowledgement
This work was supported by the National Research Foundation of Korea (grants NRF 2021R1I1A3057067, 2021R1A5A8029490, 2022R1A2C3010331) and the Program for New Plant Breeding Techniques (NBT, PJ01686702), Rural Development Administration (RDA), Korea.
References
- Wang Y, Xue P, Cao M et al (2021) Directed evolution: methodologies and applications. Chem Rev 121, 12384-12444 https://doi.org/10.1021/acs.chemrev.1c00260
- Shelake RM, Pramanik D, Kim JY (2019) Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing. Plant Biotechnol Rep 13, 423-445 https://doi.org/10.1007/s11816-019-00562-z
- Rao GS, Jiang W and Mahfouz M (2021) Synthetic directed evolution in plants: unlocking trait engineering and improvement. Synth Biol 6, ysab025
- McLure RJ, Radford SE and Brockwell DJ (2022) High-throughput directed evolution: a golden era for protein science. Trends Chem 4, 378-391 https://doi.org/10.1016/j.trechm.2022.02.004
- Wang H, He Y, Wang Y et al (2022) Base editing-mediated targeted evolution of ACCase for herbicide-resistant rice mutants. J Integr Plant Biol 64, 2029-2032 https://doi.org/10.1111/jipb.13352
- Molina RS, Rix G, Mengiste AA et al (2022) In vivo hypermutation and continuous evolution. Nat Rev Methods Primers 2, 37
- Alvarez B, Mencia M, de Lorenzo V and Fernandez LA (2020) In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nat Commun 11, 6436
- Chen H, Liu S, Padula S et al (2020) Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nat Biotechnol 38, 165-168 https://doi.org/10.1038/s41587-019-0331-8
- Esvelt KM, Carlson JC and Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472, 499-503 https://doi.org/10.1038/nature09929
- Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788 https://doi.org/10.1038/s41576-018-0059-1
- Lee HK, Oh Y, Hong J et al (2021) Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Rep 54, 98-105 https://doi.org/10.5483/BMBRep.2021.54.2.217
- Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, 6436
- Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 https://doi.org/10.1038/nature17946
- Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature 551, 464-471 https://doi.org/10.1038/nature24644
- Shelake RM, Pramanik D and Kim JY (2022) In vivo rapid investigation of CRISPR-based base editing components in Escherichia coli (IRI-CCE): a platform for evaluating base editing tools and their components. Int J Mol Sci 23, 1145
- Pramanik D, Shelake RM, Kim MJ and Kim JY (2021) CRISPR-mediated engineering across the central dogma in plant biology for basic research and crop improvement. Mol Plant 14, 127-150 https://doi.org/10.1016/j.molp.2020.11.002
- Hess GT, Fresard L, Han K et al (2016) Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 13, 1036-1042 https://doi.org/10.1038/nmeth.4038
- Halperin SO, Tou CJ, Wong EB et al (2018) CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248-252 https://doi.org/10.1038/s41586-018-0384-8
- Nishida K and Kondo A (2021) Method for modifying genome sequence to introduce specific mutation to targeted DNA sequence by base-removal reaction, and molecular complex used therein. U.S. Patent Appl. No. 15/523, 939
- Kim JY and Shelake RM (2021) Method for inducing reactive oxygen species-mediated base mutation of target gene. KR Patent Appl. No. 1020180096931
- Klompe SE, Vo PLH, Halpin-Healy TS and Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219-225 https://doi.org/10.1038/s41586-019-1323-z
- Strecker J, Ladha A, Gardner Z et al (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48-53 https://doi.org/10.1126/science.aax9181
- Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
- Packer MS and Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16, 379-394 https://doi.org/10.1038/nrg3927
- Ma Y, Zhang J, Yin W et al (2016) Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 13, 1029-1035 https://doi.org/10.1038/nmeth.4027
- Kurt IC, Zhou R, Iyer S et al (2021) CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39, 41-46 https://doi.org/10.1038/s41587-020-0609-x
- Zhao D, Li J, Li S et al (2021) Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 39, 35-40 https://doi.org/10.1038/s41587-020-0592-2
- Chen S, Liu Z, Lai L and Li Z (2022) Efficient C-To-G base editing with improved target compatibility using engineered deaminase-nCas9 fusions. CRISPR J 5, 389-396 https://doi.org/10.1089/crispr.2021.0124
- Sun N, Zhao D, Li S et al (2022) Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Mol Ther 30, 2452-2463 https://doi.org/10.1016/j.ymthe.2022.03.023
- Koblan LW, Arbab M, Shen MW et al (2021) Efficient C.G-to-G.C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat Biotechnol 39, 1414-1425 https://doi.org/10.1038/s41587-021-00938-z
- Chen L, Park JE, Paa P et al (2021) Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat Commun 12, 1384
- Yuan T, Yan N, Fei T et al (2021) Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nat Commun 12, 4902
- Richter MF, Zhao KT, Eton E et al (2020) Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 38, 883-891 https://doi.org/10.1038/s41587-020-0453-z
- Anzalone AV, Koblan LW and Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38, 824-844 https://doi.org/10.1038/s41587-020-0561-9
- Gaudelli NM, Lam DK, Rees HA et al (2020) Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol 38, 892-900 https://doi.org/10.1038/s41587-020-0491-6
- Tong H, Wang X, Liu Y et al (2023) Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol 41, 1080-1084 https://doi.org/10.1038/s41587-022-01595-6
- Li C, Zhang R, Meng X et al (2020) Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol 38, 875-882 https://doi.org/10.1038/s41587-019-0393-7
- Xie J, Huang X, Wang X et al (2020) ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biol 18, 131
- Sakata RC, Ishiguro S, Mori H et al (2020) Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 38, 865-869 https://doi.org/10.1038/s41587-020-0509-0
- Zhang X, Zhu B, Chen L et al (2020) Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 38, 856-860 https://doi.org/10.1038/s41587-020-0527-y
- Grunewald J, Zhou R, Lareau CA et al (2020) A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol 38, 861-864 https://doi.org/10.1038/s41587-020-0535-y
- Shelake RM, Pramanik D and Kim JY (2023) Improved dual base editor systems (iACBEs) for simultaneous conversion of adenine and cytosine in the bacterium Escherichia coli. mBio 14, e0229622
- Hao W, Cui W, Suo F et al (2022) Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion. Chem Sci 13, 14395-14409 https://doi.org/10.1039/D2SC05824C
- Tao W, Liu Q, Huang S et al (2021) CABE-RY: a PAMflexible dual-mutation base editor for reliable modeling of multi-nucleotide variants. Mol Ther Nucleic Acids 26, 114-121 https://doi.org/10.1016/j.omtn.2021.07.016
- Xiong X, Li Z, Liang J et al (2022) A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Res 50, 3565-3580 https://doi.org/10.1093/nar/gkac166
- Xue N, Liu X, Zhang D et al (2023) Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD. Nat Commun 14, 1224
- Liang Y, Xie J, Zhang Q et al (2022) AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res 50, 5384-5399 https://doi.org/10.1093/nar/gkac353
- Moore CL, Papa LJ and Shoulders MD (2018) A processive protein chimera introduces Mutations across defined DNA regions in vivo. J Am Chem Soc 140, 11560-11564 https://doi.org/10.1021/jacs.8b04001
- Cravens A, Jamil OK, Kong D et al (2021) Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nat Commun 12, 1579
- Butt H, Ramirez JLM and Mahfouz M (2022) Synthetic evolution of herbicide resistance using a T7 RNAP-based random DNA base editor. Life Sci Alliance 5, e202201538
- Park H and Kim S (2021) Gene-specific mutagenesis enables rapid continuous evolution of enzymes in vivo. Nucleic Acids Res 49, E32-E32 https://doi.org/10.1093/nar/gkaa1231
- Eom GE, Lee H and Kim S (2022) Development of a genome-targeting mutator for the adaptive evolution of microbial cells. Nucleic Acids Res 50, E38
- Mengiste AA, Wilson RH, Weissman RF et al (2023) Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria. Nucleic Acids Res 51, E31
- Seo D, Koh B, Eom G et al (2023) A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo. Nucleic Acids Res 51, e59
- Shelake RM, Kadam US, Kumar R et al (2022) Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives. Plant Commun 3, 100417
- Xu R, Kong F, Qin R et al (2021) Development of an efficient plant dual cytosine and adenine editor. J Integr Plant Biol 63, 1600-1605 https://doi.org/10.1111/jipb.13146
- Leong BJ and Hanson AD (2023) Continuous directed evolution of a feedback-resistant Arabidopsis arogenate dehydratase in plantized Escherichia coli. ACS Synth Biol 12, 43-50 https://doi.org/10.1021/acssynbio.2c00511
- Zhang X, Liu Z, Xu Y et al (2023) Activation-induced cytidine deaminase-based in vivo continuous evolution system enables rapid protein engineering. bioRxiv, https://doi.org/10.1101/2023.01.17.524385
- Liu Z, Chen S and Wu J (2023) Advances in ultrahigh-throughput screening technologies for protein evolution. Trends Biotechnol 41, 1168-1181 https://doi.org/10.1016/j.tibtech.2023.03.010