DOI QR코드

DOI QR Code

Harnessing CRISPR-Cas adaptation for RNA recording and beyond

  • Gyeong-Seok Oh (Center for RNA Research, Institute for Basic Science) ;
  • Seongjin An (Center for RNA Research, Institute for Basic Science) ;
  • Sungchul Kim (Center for RNA Research, Institute for Basic Science)
  • Received : 2023.04.03
  • Accepted : 2023.04.04
  • Published : 2024.01.31

Abstract

Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNA-guided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies.

Keywords

Acknowledgement

This work was supported by IBS-R008-D1, Young Scientist Fellowship program of the Institute for Basic Science from the Ministry of Science and ICT of Korea.

References

  1. Hille F, Richter H, Wong SP, Bratovic M, Ressel S and Charpentier E (2018) The biology of crispr-cas: backward and forward. Cell 172, 1239-1259  https://doi.org/10.1016/j.cell.2017.11.032
  2. Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526, 55-61  https://doi.org/10.1038/nature15386
  3. McGinn J and Marraffini LA (2019) Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat Rev Microbiol 17, 7-12  https://doi.org/10.1038/s41579-018-0071-7
  4. Frost LS, Leplae R, Summers AO and Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3, 722-732  https://doi.org/10.1038/nrmicro1235
  5. Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC and Brouns SJ (2017) CRISPR-Cas: adapting to change. Science 356, eaal5056 
  6. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712  https://doi.org/10.1126/science.1138140
  7. Fineran PC and Charpentier E (2012) Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 434, 202-209  https://doi.org/10.1016/j.virol.2012.10.003
  8. Lee H and Sashital DG (2022) Creating memories: molecular mechanisms of CRISPR adaptation. Trends Biochem Sci 47, 464-476  https://doi.org/10.1016/j.tibs.2022.02.004
  9. Deveau H, Garneau JE and Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64, 475-493  https://doi.org/10.1146/annurev.micro.112408.134123
  10. Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71  https://doi.org/10.1038/nature09523
  11. Hale CR, Zhao P, Olson S et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956  https://doi.org/10.1016/j.cell.2009.07.040
  12. Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845  https://doi.org/10.1126/science.1165771
  13. Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18, 67-83  https://doi.org/10.1038/s41579-019-0299-x
  14. van Beljouw SPB, Sanders J, Rodriguez-Molina A and Brouns SJJ (2023) RNA-targeting CRISPR-Cas systems. Nat Rev Microbiol 21, 21-34  https://doi.org/10.1038/s41579-022-00793-y
  15. Ekundayo B, Torre D, Beckert B et al (2023) Structural insights into the regulation of Cas7-11 by TPR-CHAT. Nat Struct Mol Biol 30, 135-139  https://doi.org/10.1038/s41594-022-00894-5
  16. Wang S, Guo M, Zhu Y, Lin Z and Huang Z (2022) Cryo-EM structure of the type III-E CRISPR-Cas effector gRAMP in complex with TPR-CHAT. Cell Res 32, 1128-1131  https://doi.org/10.1038/s41422-022-00738-3
  17. Huo Y, Zhao H, Dong Q and Jiang T (2023) Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector. Nat Microbiol 8, 522-532  https://doi.org/10.1038/s41564-022-01316-4
  18. Wang X, Yu G, Wen Y et al (2022) Target RNA-guided protease activity in type III-E CRISPR-Cas system. Nucleic Acids Res 50, 12913-12923  https://doi.org/10.1093/nar/gkac1151
  19. Kato K, Okazaki S, Schmitt-Ulms C et al (2022) RNAtriggered protein cleavage and cell growth arrest by the type III-E CRISPR nuclease-protease. Science 378, 882-889  https://doi.org/10.1126/science.add7347
  20. Strecker J, Demircioglu FE, Li D et al (2022) RNA-activated protein cleavage with a CRISPR-associated endopeptidase. Science 378, 874-881  https://doi.org/10.1126/science.add7450
  21. Yu G, Wang X, Zhang Y et al (2022) Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex. Nat Microbiol 7, 2078-2088  https://doi.org/10.1038/s41564-022-01256-z
  22. Hu C, van Beljouw SPB, Nam KH et al (2022) Craspase is a CRISPR RNA-guided, RNA-activated protease. Science 377, 1278-1285  https://doi.org/10.1126/science.add5064
  23. Niewoehner O, Garcia-Doval C, Rostol JT et al (2017) Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543-548  https://doi.org/10.1038/nature23467
  24. Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G and Siksnys V (2017) A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357, 605-609  https://doi.org/10.1126/science.aao0100
  25. Koonin EV and Makarova KS (2018) Discovery of oligonucleotide signaling mediated by crispr-associated polymerases solves two puzzles but leaves an enigma. ACS Chem Biol 13, 309-312  https://doi.org/10.1021/acschembio.7b00713
  26. Coleman GA, Davin AA, Mahendrarajah TA et al (2021) A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 
  27. Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736  https://doi.org/10.1038/nrmicro3569
  28. Molina R, Sofos N and Montoya G (2020) Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Curr Opin Struct Biol 65, 119-129  https://doi.org/10.1016/j.sbi.2020.06.010
  29. Tamulaitis G, Venclovas C and Siksnys V (2017) Type III CRISPR-Cas immunity: major differences brushed aside. Trends Microbiol 25, 49-61  https://doi.org/10.1016/j.tim.2016.09.012
  30. Rouillon C, Zhou M, Zhang J et al (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52, 124-134  https://doi.org/10.1016/j.molcel.2013.08.020
  31. Zhang J, Rouillon C, Kerou M et al (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45, 303-313  https://doi.org/10.1016/j.molcel.2011.12.013
  32. van Beljouw SPB, Haagsma AC, Rodriguez-Molina A, van den Berg DF, Vink JNA and Brouns SJJ (2021) The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science 373, 1349-1353  https://doi.org/10.1126/science.abk2718
  33. Goswami HN, Rai J, Das A and Li H (2022) Molecular mechanism of active Cas7-11 in processing CRISPR RNA and interfering target RNA. Elife 11, e81678 
  34. Kato K, Zhou W, Okazaki S et al (2022) Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 185, 2324-2337 e2316 
  35. Ozcan A, Krajeski R, Ioannidi E et al (2021) Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720-725  https://doi.org/10.1038/s41586-021-03886-5
  36. East-Seletsky A, O'Connell MR, Knight SC et al (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270-273  https://doi.org/10.1038/nature19802
  37. Liu L, Li X, Wang J et al (2017) Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121-134 e112 
  38. Liu L, Li X, Ma J et al (2017) The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714-726 e710 
  39. Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 
  40. Xu C, Zhou Y, Xiao Q et al (2021) Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods 18, 499-506  https://doi.org/10.1038/s41592-021-01124-4
  41. Tambe A, East-Seletsky A, Knott GJ, Doudna JA and O'Connell MR (2018) RNA binding and HEPN-nuclease activation are decoupled in CRISPR-Cas13a. Cell Rep 24, 1025-1036  https://doi.org/10.1016/j.celrep.2018.06.105
  42. Meeske AJ, Nakandakari-Higa S and Marraffini LA (2019) Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241-245  https://doi.org/10.1038/s41586-019-1257-5
  43. Leenay RT and Beisel CL (2017) Deciphering, communicating, and engineering the CRISPR PAM. J Mol Biol 429, 177-191  https://doi.org/10.1016/j.jmb.2016.11.024
  44. Meeske AJ and Marraffini LA (2018) RNA guide complementarity prevents self-targeting in type VI CRISPR systems. Mol Cell 71, 791-801 e793 
  45. Marraffini LA and Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568-571  https://doi.org/10.1038/nature08703
  46. Elmore JR, Sheppard NF, Ramia N et al (2016) Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes Dev 30, 447-459  https://doi.org/10.1101/gad.272153.115
  47. Wang J, Li J, Zhao H et al (2015) Structural and mechanistic basis of pam-dependent spacer acquisition in CRISPR-Cas systems. Cell 163, 840-853  https://doi.org/10.1016/j.cell.2015.10.008
  48. Xiao Y, Ng S, Nam KH and Ke A (2017) How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Nature 550, 137-141  https://doi.org/10.1038/nature24020
  49. Makarova KS and Koonin EV (2015) Annotation and Classification of CRISPR-Cas Systems. Methods Mol Biol 1311, 47-75  https://doi.org/10.1007/978-1-4939-2687-9_4
  50. Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW and Doudna JA (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21, 528-534  https://doi.org/10.1038/nsmb.2820
  51. Nunez JK, Bai L, Harrington LB, Hinder TL and Doudna JA (2016) CRISPR immunological memory requires a host factor for specificity. Mol Cell 62, 824-833  https://doi.org/10.1016/j.molcel.2016.04.027
  52. Nunez JK, Harrington LB, Kranzusch PJ, Engelman AN and Doudna JA (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527, 535-538  https://doi.org/10.1038/nature15760
  53. Nunez JK, Lee AS, Engelman A and Doudna JA (2015) Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519, 193-198  https://doi.org/10.1038/nature14237
  54. Wright AV, Nunez JK and Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29-44  https://doi.org/10.1016/j.cell.2015.12.035
  55. Yosef I, Goren MG and Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40, 5569-5576  https://doi.org/10.1093/nar/gks216
  56. Diez-Villasenor C, Guzman NM, Almendros C, Garcia-Martinez J and Mojica FJ (2013) CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol 10, 792-802  https://doi.org/10.4161/rna.24023
  57. Levy A, Goren MG, Yosef I et al (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505-510  https://doi.org/10.1038/nature14302
  58. Dhingra Y, Suresh SK, Juneja P and Sashital DG (2022) PAM binding ensures orientational integration during Cas4-Cas1-Cas2-mediated CRISPR adaptation. Mol Cell 82, 4353-4367 e4356 
  59. Hu C, Almendros C, Nam KH et al (2021) Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas. Nature 598, 515-520  https://doi.org/10.1038/s41586-021-03951-z
  60. Kieper SN, Almendros C, Haagsma AC, Barendregt A, Heck AJR and Brouns SJJ (2021) Cas4-Cas1 is a protospacer adjacent motif-processing factor mediating half-site spacer integration during CRISPR adaptation. CRISPR J 4, 536-548  https://doi.org/10.1089/crispr.2021.0011
  61. Lee H, Dhingra Y and Sashital DG (2019) The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation. Elife 8, e44248 
  62. Shiriaeva AA, Savitskaya E, Datsenko KA et al (2019) Detection of spacer precursors formed in vivo during primed CRISPR adaptation. Nat Commun 10, 4603 
  63. Kim S, Loeff L, Colombo S, Jergic S, Brouns SJJ and Joo C (2020) Selective loading and processing of prespacers for precise CRISPR adaptation. Nature 579, 141-145  https://doi.org/10.1038/s41586-020-2018-1
  64. Wei Y, Terns RM and Terns MP (2015) Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29, 356-361  https://doi.org/10.1101/gad.257550.114
  65. Heler R, Samai P, Modell JW et al (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519, 199-202  https://doi.org/10.1038/nature14245
  66. Jakhanwal S, Cress BF, Maguin P, Lobba MJ, Marraffini LA and Doudna JA (2021) A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration. Nucleic Acids Res 49, 3546-3556 
  67. Wilkinson M, Drabavicius G, Silanskas A, Gasiunas G, Siksnys V and Wigley DB (2019) Structure of the DNA-bound spacer capture complex of a type II CRISPR-Cas system. Mol Cell 75, 90-101 e105 
  68. Ramachandran A, Summerville L, Learn BA, DeBell L and Bailey S (2020) Processing and integration of functionally oriented prespacers in the Escherichia coli CRISPR system depends on bacterial host exonucleases. J Biol Chem 295, 3403-3414  https://doi.org/10.1074/jbc.RA119.012196
  69. Silas S, Mohr G, Sidote DJ et al (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351, aad4234 
  70. Silas S, Makarova KS, Shmakov S et al (2017) On the origin of reverse transcriptase-using CRISPR-Cas Systems and their hyperdiverse, enigmatic spacer repertoires. mBio 8, e00897-17 
  71. Simon DM and Zimmerly S (2008) A diversity of uncharacterized reverse transcriptases in bacteria. Nucleic Acids Res 36, 7219-7229  https://doi.org/10.1093/nar/gkn867
  72. Toro N and Nisa-Martinez R (2014) Comprehensive phylogenetic analysis of bacterial reverse transcriptases. PLoS One 9, e114083 
  73. Toro N, Martinez-Abarca F and Gonzalez-Delgado A (2017) The Reverse transcriptases associated with CRISPR-Cas systems. Sci Rep 7, 7089 
  74. Toro N, Mestre MR, Martinez-Abarca F and Gonzalez-Delgado A (2019) Recruitment of reverse transcriptase-Cas1 fusion proteins by type VI-A CRISPR-Cas systems. Front Microbiol 10, 2160 
  75. Wang JY, Hoel CM, Al-Shayeb B, Banfield JF, Brohawn SG and Doudna JA (2021) Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex. Nat Commun 12, 2571 
  76. Mohr G, Silas S, Stamos JL et al (2018) A reverse transcriptase-Cas1 fusion protein contains a Cas6 domain required for both CRISPR RNA biogenesis and RNA spacer acquisition. Mol Cell 72, 700-714 e708 
  77. Carte J, Wang R, Li H, Terns RM and Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22, 3489-3496  https://doi.org/10.1101/gad.1742908
  78. Wang JY, Hoel CM, Al-Shayeb B, Banfield JF, Brohawn SG and Doudna JA (2021) Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex. Nat Commun 12, 2571 
  79. Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E and Doudna JA (2017) Structures of the CRISPR genome integration complex. Science 357, 1113-1118  https://doi.org/10.1126/science.aao0679
  80. Nunez JK, Harrington LB, Kranzusch PJ, Engelman AN and Doudna JA (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527, 535-538  https://doi.org/10.1038/nature15760
  81. Wang J, Li J, Zhao H et al (2015) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163, 840-853  https://doi.org/10.1016/j.cell.2015.10.008
  82. Stamos JL, Lentzsch AM and Lambowitz AM (2017) Structure of a thermostable group II intron reverse transcriptase with template-primer and its functional and evolutionary implications. Mol Cell 68, 926-939 e924 
  83. Mitchell M, Gillis A, Futahashi M, Fujiwara H and Skordalakes E (2010) Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17, 513-518  https://doi.org/10.1038/nsmb.1777
  84. Mohr G, Silas S, Stamos JL et al (2018) A reverse transcriptase-Cas1 fusion protein contains a Cas6 domain required for both CRISPR RNA biogenesis and RNA spacer acquisition. Mol Cell 72, 700-714 e708 
  85. Hochstrasser ML and Doudna JA (2015) Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci 40, 58-66  https://doi.org/10.1016/j.tibs.2014.10.007
  86. Reeks J, Sokolowski RD, Graham S, Liu H, Naismith JH and White MF (2013) Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochem J 452, 223-230  https://doi.org/10.1042/BJ20130269
  87. Silas S, Mohr G, Sidote DJ et al (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351, aad4234 
  88. Schmidt F, Cherepkova MY and Platt RJ (2018) Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 562, 380-385  https://doi.org/10.1038/s41586-018-0569-1
  89. Gonzalez-Delgado A, Mestre MR, Martinez-Abarca F and Toro N (2019) Spacer acquisition from RNA mediated by a natural reverse transcriptase-Cas1 fusion protein associated with a type III-D CRISPR-Cas system in Vibrio vulnificus. Nucleic Acids Res 47, 10202-10211  https://doi.org/10.1093/nar/gkz746
  90. Burrill DR and Silver PA (2010) Making cellular memories. Cell 140, 13-18  https://doi.org/10.1016/j.cell.2009.12.034
  91. Gardner TS, Cantor CR and Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339-342  https://doi.org/10.1038/35002131
  92. Siuti P, Yazbek J and Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 31, 448-452  https://doi.org/10.1038/nbt.2510
  93. Lear SK and Shipman SL (2023) Molecular recording: transcriptional data collection into the genome. Curr Opin Biotechnol 79, 102855 
  94. Shipman SL, Nivala J, Macklis JD and Church GM (2016) Molecular recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 
  95. Sheth RU, Yim SS, Wu FL and Wang HH (2017) Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457-1461  https://doi.org/10.1126/science.aao0958
  96. Shipman SL, Nivala J, Macklis JD and Church GM (2017) CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345-349  https://doi.org/10.1038/nature23017
  97. Matsoukas IG (2017) Commentary: CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Front Bioeng Biotechnol 5, 57 
  98. Sheth RU and Wang HH (2018) DNA-based memory devices for recording cellular events. Nat Rev Genet 19, 718-732  https://doi.org/10.1038/s41576-018-0052-8
  99. Tanna T, Schmidt F, Cherepkova MY, Okoniewski M and Platt RJ (2020) Recording transcriptional histories using Record-seq. Nat Protoc 15, 513-539  https://doi.org/10.1038/s41596-019-0253-4
  100. McKenna A and Gagnon JA (2019) Recording development with single cell dynamic lineage tracing. Development 146, dev169730 
  101. Schmidt F, Zimmermann J, Tanna T et al (2022) Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376, eabm6038 
  102. Bhattarai-Kline S, Lear SK, Fishman CB et al (2022) Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217-225  https://doi.org/10.1038/s41586-022-04994-6
  103. Wang JY and Doudna JA (2023) CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 
  104. Tang L (2020) Guiding Cas13 for RNA knockdown. Nat Methods 17, 461 
  105. Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F and Collins JJ (2021) CRISPR-based diagnostics. Nat Biomed Eng 5, 643-656  https://doi.org/10.1038/s41551-021-00760-7
  106. Yoganand KN, Sivathanu R, Nimkar S and Anand B (2017) Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system. Nucleic Acids Res 45, 367-381 https://doi.org/10.1093/nar/gkw1151