Acknowledgement
This work was supported by IBS-R008-D1, Young Scientist Fellowship program of the Institute for Basic Science from the Ministry of Science and ICT of Korea.
References
- Hille F, Richter H, Wong SP, Bratovic M, Ressel S and Charpentier E (2018) The biology of crispr-cas: backward and forward. Cell 172, 1239-1259 https://doi.org/10.1016/j.cell.2017.11.032
- Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526, 55-61 https://doi.org/10.1038/nature15386
- McGinn J and Marraffini LA (2019) Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat Rev Microbiol 17, 7-12 https://doi.org/10.1038/s41579-018-0071-7
- Frost LS, Leplae R, Summers AO and Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3, 722-732 https://doi.org/10.1038/nrmicro1235
- Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC and Brouns SJ (2017) CRISPR-Cas: adapting to change. Science 356, eaal5056
- Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
- Fineran PC and Charpentier E (2012) Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 434, 202-209 https://doi.org/10.1016/j.virol.2012.10.003
- Lee H and Sashital DG (2022) Creating memories: molecular mechanisms of CRISPR adaptation. Trends Biochem Sci 47, 464-476 https://doi.org/10.1016/j.tibs.2022.02.004
- Deveau H, Garneau JE and Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64, 475-493 https://doi.org/10.1146/annurev.micro.112408.134123
- Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71 https://doi.org/10.1038/nature09523
- Hale CR, Zhao P, Olson S et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956 https://doi.org/10.1016/j.cell.2009.07.040
- Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845 https://doi.org/10.1126/science.1165771
- Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18, 67-83 https://doi.org/10.1038/s41579-019-0299-x
- van Beljouw SPB, Sanders J, Rodriguez-Molina A and Brouns SJJ (2023) RNA-targeting CRISPR-Cas systems. Nat Rev Microbiol 21, 21-34 https://doi.org/10.1038/s41579-022-00793-y
- Ekundayo B, Torre D, Beckert B et al (2023) Structural insights into the regulation of Cas7-11 by TPR-CHAT. Nat Struct Mol Biol 30, 135-139 https://doi.org/10.1038/s41594-022-00894-5
- Wang S, Guo M, Zhu Y, Lin Z and Huang Z (2022) Cryo-EM structure of the type III-E CRISPR-Cas effector gRAMP in complex with TPR-CHAT. Cell Res 32, 1128-1131 https://doi.org/10.1038/s41422-022-00738-3
- Huo Y, Zhao H, Dong Q and Jiang T (2023) Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector. Nat Microbiol 8, 522-532 https://doi.org/10.1038/s41564-022-01316-4
- Wang X, Yu G, Wen Y et al (2022) Target RNA-guided protease activity in type III-E CRISPR-Cas system. Nucleic Acids Res 50, 12913-12923 https://doi.org/10.1093/nar/gkac1151
- Kato K, Okazaki S, Schmitt-Ulms C et al (2022) RNAtriggered protein cleavage and cell growth arrest by the type III-E CRISPR nuclease-protease. Science 378, 882-889 https://doi.org/10.1126/science.add7347
- Strecker J, Demircioglu FE, Li D et al (2022) RNA-activated protein cleavage with a CRISPR-associated endopeptidase. Science 378, 874-881 https://doi.org/10.1126/science.add7450
- Yu G, Wang X, Zhang Y et al (2022) Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex. Nat Microbiol 7, 2078-2088 https://doi.org/10.1038/s41564-022-01256-z
- Hu C, van Beljouw SPB, Nam KH et al (2022) Craspase is a CRISPR RNA-guided, RNA-activated protease. Science 377, 1278-1285 https://doi.org/10.1126/science.add5064
- Niewoehner O, Garcia-Doval C, Rostol JT et al (2017) Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543-548 https://doi.org/10.1038/nature23467
- Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G and Siksnys V (2017) A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357, 605-609 https://doi.org/10.1126/science.aao0100
- Koonin EV and Makarova KS (2018) Discovery of oligonucleotide signaling mediated by crispr-associated polymerases solves two puzzles but leaves an enigma. ACS Chem Biol 13, 309-312 https://doi.org/10.1021/acschembio.7b00713
- Coleman GA, Davin AA, Mahendrarajah TA et al (2021) A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511
- Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736 https://doi.org/10.1038/nrmicro3569
- Molina R, Sofos N and Montoya G (2020) Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Curr Opin Struct Biol 65, 119-129 https://doi.org/10.1016/j.sbi.2020.06.010
- Tamulaitis G, Venclovas C and Siksnys V (2017) Type III CRISPR-Cas immunity: major differences brushed aside. Trends Microbiol 25, 49-61 https://doi.org/10.1016/j.tim.2016.09.012
- Rouillon C, Zhou M, Zhang J et al (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52, 124-134 https://doi.org/10.1016/j.molcel.2013.08.020
- Zhang J, Rouillon C, Kerou M et al (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45, 303-313 https://doi.org/10.1016/j.molcel.2011.12.013
- van Beljouw SPB, Haagsma AC, Rodriguez-Molina A, van den Berg DF, Vink JNA and Brouns SJJ (2021) The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science 373, 1349-1353 https://doi.org/10.1126/science.abk2718
- Goswami HN, Rai J, Das A and Li H (2022) Molecular mechanism of active Cas7-11 in processing CRISPR RNA and interfering target RNA. Elife 11, e81678
- Kato K, Zhou W, Okazaki S et al (2022) Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 185, 2324-2337 e2316
- Ozcan A, Krajeski R, Ioannidi E et al (2021) Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720-725 https://doi.org/10.1038/s41586-021-03886-5
- East-Seletsky A, O'Connell MR, Knight SC et al (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270-273 https://doi.org/10.1038/nature19802
- Liu L, Li X, Wang J et al (2017) Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121-134 e112
- Liu L, Li X, Ma J et al (2017) The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714-726 e710
- Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573
- Xu C, Zhou Y, Xiao Q et al (2021) Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods 18, 499-506 https://doi.org/10.1038/s41592-021-01124-4
- Tambe A, East-Seletsky A, Knott GJ, Doudna JA and O'Connell MR (2018) RNA binding and HEPN-nuclease activation are decoupled in CRISPR-Cas13a. Cell Rep 24, 1025-1036 https://doi.org/10.1016/j.celrep.2018.06.105
- Meeske AJ, Nakandakari-Higa S and Marraffini LA (2019) Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241-245 https://doi.org/10.1038/s41586-019-1257-5
- Leenay RT and Beisel CL (2017) Deciphering, communicating, and engineering the CRISPR PAM. J Mol Biol 429, 177-191 https://doi.org/10.1016/j.jmb.2016.11.024
- Meeske AJ and Marraffini LA (2018) RNA guide complementarity prevents self-targeting in type VI CRISPR systems. Mol Cell 71, 791-801 e793
- Marraffini LA and Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568-571 https://doi.org/10.1038/nature08703
- Elmore JR, Sheppard NF, Ramia N et al (2016) Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes Dev 30, 447-459 https://doi.org/10.1101/gad.272153.115
- Wang J, Li J, Zhao H et al (2015) Structural and mechanistic basis of pam-dependent spacer acquisition in CRISPR-Cas systems. Cell 163, 840-853 https://doi.org/10.1016/j.cell.2015.10.008
- Xiao Y, Ng S, Nam KH and Ke A (2017) How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Nature 550, 137-141 https://doi.org/10.1038/nature24020
- Makarova KS and Koonin EV (2015) Annotation and Classification of CRISPR-Cas Systems. Methods Mol Biol 1311, 47-75 https://doi.org/10.1007/978-1-4939-2687-9_4
- Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW and Doudna JA (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21, 528-534 https://doi.org/10.1038/nsmb.2820
- Nunez JK, Bai L, Harrington LB, Hinder TL and Doudna JA (2016) CRISPR immunological memory requires a host factor for specificity. Mol Cell 62, 824-833 https://doi.org/10.1016/j.molcel.2016.04.027
- Nunez JK, Harrington LB, Kranzusch PJ, Engelman AN and Doudna JA (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527, 535-538 https://doi.org/10.1038/nature15760
- Nunez JK, Lee AS, Engelman A and Doudna JA (2015) Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519, 193-198 https://doi.org/10.1038/nature14237
- Wright AV, Nunez JK and Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29-44 https://doi.org/10.1016/j.cell.2015.12.035
- Yosef I, Goren MG and Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40, 5569-5576 https://doi.org/10.1093/nar/gks216
- Diez-Villasenor C, Guzman NM, Almendros C, Garcia-Martinez J and Mojica FJ (2013) CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol 10, 792-802 https://doi.org/10.4161/rna.24023
- Levy A, Goren MG, Yosef I et al (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505-510 https://doi.org/10.1038/nature14302
- Dhingra Y, Suresh SK, Juneja P and Sashital DG (2022) PAM binding ensures orientational integration during Cas4-Cas1-Cas2-mediated CRISPR adaptation. Mol Cell 82, 4353-4367 e4356
- Hu C, Almendros C, Nam KH et al (2021) Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas. Nature 598, 515-520 https://doi.org/10.1038/s41586-021-03951-z
- Kieper SN, Almendros C, Haagsma AC, Barendregt A, Heck AJR and Brouns SJJ (2021) Cas4-Cas1 is a protospacer adjacent motif-processing factor mediating half-site spacer integration during CRISPR adaptation. CRISPR J 4, 536-548 https://doi.org/10.1089/crispr.2021.0011
- Lee H, Dhingra Y and Sashital DG (2019) The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation. Elife 8, e44248
- Shiriaeva AA, Savitskaya E, Datsenko KA et al (2019) Detection of spacer precursors formed in vivo during primed CRISPR adaptation. Nat Commun 10, 4603
- Kim S, Loeff L, Colombo S, Jergic S, Brouns SJJ and Joo C (2020) Selective loading and processing of prespacers for precise CRISPR adaptation. Nature 579, 141-145 https://doi.org/10.1038/s41586-020-2018-1
- Wei Y, Terns RM and Terns MP (2015) Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29, 356-361 https://doi.org/10.1101/gad.257550.114
- Heler R, Samai P, Modell JW et al (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519, 199-202 https://doi.org/10.1038/nature14245
- Jakhanwal S, Cress BF, Maguin P, Lobba MJ, Marraffini LA and Doudna JA (2021) A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration. Nucleic Acids Res 49, 3546-3556
- Wilkinson M, Drabavicius G, Silanskas A, Gasiunas G, Siksnys V and Wigley DB (2019) Structure of the DNA-bound spacer capture complex of a type II CRISPR-Cas system. Mol Cell 75, 90-101 e105
- Ramachandran A, Summerville L, Learn BA, DeBell L and Bailey S (2020) Processing and integration of functionally oriented prespacers in the Escherichia coli CRISPR system depends on bacterial host exonucleases. J Biol Chem 295, 3403-3414 https://doi.org/10.1074/jbc.RA119.012196
- Silas S, Mohr G, Sidote DJ et al (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351, aad4234
- Silas S, Makarova KS, Shmakov S et al (2017) On the origin of reverse transcriptase-using CRISPR-Cas Systems and their hyperdiverse, enigmatic spacer repertoires. mBio 8, e00897-17
- Simon DM and Zimmerly S (2008) A diversity of uncharacterized reverse transcriptases in bacteria. Nucleic Acids Res 36, 7219-7229 https://doi.org/10.1093/nar/gkn867
- Toro N and Nisa-Martinez R (2014) Comprehensive phylogenetic analysis of bacterial reverse transcriptases. PLoS One 9, e114083
- Toro N, Martinez-Abarca F and Gonzalez-Delgado A (2017) The Reverse transcriptases associated with CRISPR-Cas systems. Sci Rep 7, 7089
- Toro N, Mestre MR, Martinez-Abarca F and Gonzalez-Delgado A (2019) Recruitment of reverse transcriptase-Cas1 fusion proteins by type VI-A CRISPR-Cas systems. Front Microbiol 10, 2160
- Wang JY, Hoel CM, Al-Shayeb B, Banfield JF, Brohawn SG and Doudna JA (2021) Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex. Nat Commun 12, 2571
- Mohr G, Silas S, Stamos JL et al (2018) A reverse transcriptase-Cas1 fusion protein contains a Cas6 domain required for both CRISPR RNA biogenesis and RNA spacer acquisition. Mol Cell 72, 700-714 e708
- Carte J, Wang R, Li H, Terns RM and Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22, 3489-3496 https://doi.org/10.1101/gad.1742908
- Wang JY, Hoel CM, Al-Shayeb B, Banfield JF, Brohawn SG and Doudna JA (2021) Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex. Nat Commun 12, 2571
- Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E and Doudna JA (2017) Structures of the CRISPR genome integration complex. Science 357, 1113-1118 https://doi.org/10.1126/science.aao0679
- Nunez JK, Harrington LB, Kranzusch PJ, Engelman AN and Doudna JA (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527, 535-538 https://doi.org/10.1038/nature15760
- Wang J, Li J, Zhao H et al (2015) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163, 840-853 https://doi.org/10.1016/j.cell.2015.10.008
- Stamos JL, Lentzsch AM and Lambowitz AM (2017) Structure of a thermostable group II intron reverse transcriptase with template-primer and its functional and evolutionary implications. Mol Cell 68, 926-939 e924
- Mitchell M, Gillis A, Futahashi M, Fujiwara H and Skordalakes E (2010) Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17, 513-518 https://doi.org/10.1038/nsmb.1777
- Mohr G, Silas S, Stamos JL et al (2018) A reverse transcriptase-Cas1 fusion protein contains a Cas6 domain required for both CRISPR RNA biogenesis and RNA spacer acquisition. Mol Cell 72, 700-714 e708
- Hochstrasser ML and Doudna JA (2015) Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci 40, 58-66 https://doi.org/10.1016/j.tibs.2014.10.007
- Reeks J, Sokolowski RD, Graham S, Liu H, Naismith JH and White MF (2013) Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochem J 452, 223-230 https://doi.org/10.1042/BJ20130269
- Silas S, Mohr G, Sidote DJ et al (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351, aad4234
- Schmidt F, Cherepkova MY and Platt RJ (2018) Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 562, 380-385 https://doi.org/10.1038/s41586-018-0569-1
- Gonzalez-Delgado A, Mestre MR, Martinez-Abarca F and Toro N (2019) Spacer acquisition from RNA mediated by a natural reverse transcriptase-Cas1 fusion protein associated with a type III-D CRISPR-Cas system in Vibrio vulnificus. Nucleic Acids Res 47, 10202-10211 https://doi.org/10.1093/nar/gkz746
- Burrill DR and Silver PA (2010) Making cellular memories. Cell 140, 13-18 https://doi.org/10.1016/j.cell.2009.12.034
- Gardner TS, Cantor CR and Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339-342 https://doi.org/10.1038/35002131
- Siuti P, Yazbek J and Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 31, 448-452 https://doi.org/10.1038/nbt.2510
- Lear SK and Shipman SL (2023) Molecular recording: transcriptional data collection into the genome. Curr Opin Biotechnol 79, 102855
- Shipman SL, Nivala J, Macklis JD and Church GM (2016) Molecular recordings by directed CRISPR spacer acquisition. Science 353, aaf1175
- Sheth RU, Yim SS, Wu FL and Wang HH (2017) Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457-1461 https://doi.org/10.1126/science.aao0958
- Shipman SL, Nivala J, Macklis JD and Church GM (2017) CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345-349 https://doi.org/10.1038/nature23017
- Matsoukas IG (2017) Commentary: CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Front Bioeng Biotechnol 5, 57
- Sheth RU and Wang HH (2018) DNA-based memory devices for recording cellular events. Nat Rev Genet 19, 718-732 https://doi.org/10.1038/s41576-018-0052-8
- Tanna T, Schmidt F, Cherepkova MY, Okoniewski M and Platt RJ (2020) Recording transcriptional histories using Record-seq. Nat Protoc 15, 513-539 https://doi.org/10.1038/s41596-019-0253-4
- McKenna A and Gagnon JA (2019) Recording development with single cell dynamic lineage tracing. Development 146, dev169730
- Schmidt F, Zimmermann J, Tanna T et al (2022) Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376, eabm6038
- Bhattarai-Kline S, Lear SK, Fishman CB et al (2022) Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217-225 https://doi.org/10.1038/s41586-022-04994-6
- Wang JY and Doudna JA (2023) CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643
- Tang L (2020) Guiding Cas13 for RNA knockdown. Nat Methods 17, 461
- Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F and Collins JJ (2021) CRISPR-based diagnostics. Nat Biomed Eng 5, 643-656 https://doi.org/10.1038/s41551-021-00760-7
- Yoganand KN, Sivathanu R, Nimkar S and Anand B (2017) Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system. Nucleic Acids Res 45, 367-381 https://doi.org/10.1093/nar/gkw1151