Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00210965) and the Korea Institute of Science and Technology (KIST) Institutional Program (2E32161). Figures were created with BioRender.com.
References
- Rackham O and Filipovska A (2022) Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 23, 606-623 https://doi.org/10.1038/s41576-022-00480-x
- Gupta R, Kanai M, Durham TJ et al (2023) Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. Nature 620, 839-848 https://doi.org/10.1038/s41586-023-06426-5
- Gorman GS, Schaefer AM, Ng Y et al (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 77, 753-759 https://doi.org/10.1002/ana.24362
- Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-465 https://doi.org/10.1038/290457a0
- Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G and Schon EA (1995) Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 57, 239-247 https://doi.org/10.1002/ajmg.1320570226
- Taylor RW and Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6, 389-402 https://doi.org/10.1038/nrg1606
- Kopinski PK, Singh LN, Zhang S, Lott MT and Wallace DC (2021) Mitochondrial DNA variation and cancer. Nat Rev Cancer 21, 431-445 https://doi.org/10.1038/s41568-021-00358-w
- Kogelnik AM, Lott MT, Brown MD, Navathe SB and Wallace DC (1996) MITOMAP: a human mitochondrial genome database. Nucleic Acids Res 24, 177-179 https://doi.org/10.1093/nar/24.1.177
- He Y, Wu J, Dressman DC et al (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610-614 https://doi.org/10.1038/nature08802
- Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP and Letellier T (2003) Mitochondrial threshold effects. Biochem J 370, 751-762 https://doi.org/10.1042/bj20021594
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
- Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 https://doi.org/10.1038/nature17946
- Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471 https://doi.org/10.1038/nature24644
- Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
- Gammage PA, Moraes CT and Minczuk M (2018) Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet 34, 101-110 https://doi.org/10.1016/j.tig.2017.11.001
- Fontana GA and Gahlon HL (2020) Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res 48, 11244-11258 https://doi.org/10.1093/nar/gkaa804
- Silva-Pinheiro P and Minczuk M (2022) The potential of mitochondrial genome engineering. Nat Rev Genet 23, 199-214 https://doi.org/10.1038/s41576-021-00432-x
- Peeva V, Blei D, Trombly G et al (2018) Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun 9, 1727
- Krokan HE and Bjoras M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5, a012583
- Omura T (1998) Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. J Biochem 123, 1010-1016 https://doi.org/10.1093/oxfordjournals.jbchem.a022036
- Gammage PA, Rorbach J, Vincent AI, Rebar EJ and Minczuk M (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6, 458-466 https://doi.org/10.1002/emmm.201303672
- Gammage PA, Gaude E, Van Haute L et al (2016) Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 44, 7804-7816 https://doi.org/10.1093/nar/gkw676
- Gammage PA, Viscomi C, Simard ML et al (2018) Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 24, 1691-1695 https://doi.org/10.1038/s41591-018-0165-9
- Reddy P, Ocampo A, Suzuki K et al (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161, 459-469 https://doi.org/10.1016/j.cell.2015.03.051
- Bacman SR, Williams SL, Pinto M, Peralta S and Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19, 1111-1113 https://doi.org/10.1038/nm.3261
- Hashimoto M, Bacman SR, Peralta S et al (2015) MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther 23, 1592-1599 https://doi.org/10.1038/mt.2015.126
- Bacman SR, Kauppila JHK, Pereira CV et al (2018) MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 24, 1696-1700 https://doi.org/10.1038/s41591-018-0166-8
- Yang Y, Wu H, Kang X et al (2018) Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell 9, 283-297 https://doi.org/10.1007/s13238-017-0499-y
- Yahata N, Boda H and Hata R (2021) Elimination of mutant mtDNA by an optimized mpTALEN restores differentiation capacities of heteroplasmic MELAS-iPSCs. Mol Ther Methods Clin Dev 20, 54-68 https://doi.org/10.1016/j.omtm.2020.10.017
- Srivastava S and Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10, 3093-3099 https://doi.org/10.1093/hmg/10.26.3093
- Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA and Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci U S A 102, 14392-14397 https://doi.org/10.1073/pnas.0502896102
- Bacman SR, Williams SL, Duan D and Moraes CT (2012) Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease. Gene Ther 19, 1101-1106 https://doi.org/10.1038/gt.2011.196
- Tanaka M, Borgeld HJ, Zhang J et al (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9, 534-541 https://doi.org/10.1159/000064726
- Alexeyev MF, Venediktova N, Pastukh V, Shokolenko I, Bonilla G and Wilson GL (2008) Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther 15, 516-523 https://doi.org/10.1038/gt.2008.11
- Pereira CV, Bacman SR, Arguello T et al (2018) mitoTev-TALE: a monomeric DNA editing enzyme to reduce mu-tant mitochondrial DNA levels. EMBO Mol Med 10, e8084
- Zekonyte U, Bacman SR, Smith J et al (2021) Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat Commun 12, 3210
- Minczuk M, Papworth MA, Miller JC, Murphy MP and Klug A (2008) Development of a single-chain, quasidimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36, 3926-3938 https://doi.org/10.1093/nar/gkn313
- Mok BY, de Moraes MH, Zeng J et al (2020) A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631-637 https://doi.org/10.1038/s41586-020-2477-4
- Cho SI, Lee S, Mok YG et al (2022) Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764-1776 e1712
- Richter MF, Zhao KT, Eton E et al (2020) Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 38, 883-891 https://doi.org/10.1038/s41587-020-0453-z
- Yin L, Shi K and Aihara H (2023) Structural basis of sequence-specific cytosine deamination by double-stranded DNA deaminase toxin DddA. Nat Struct Mol Biol 30, 1153-1159 https://doi.org/10.1038/s41594-023-01034-3
- Mok BY, Kotrys AV, Raguram A, Huang TP, Mootha VK and Liu DR (2022) CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 40, 1378-1387 https://doi.org/10.1038/s41587-022-01256-8
- Mi L, Shi M, Li YX et al (2023) DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nat Commun 14, 874
- Sun H, Wang Z, Shen L et al (2023) Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library. Nat Commun 14, 6625
- Cheng K, Li C, Jin J et al (2023) Engineering RsDddA as mitochondrial base editor with wide target compatibility and enhanced activity. Mol Ther Nucleic Acids 34, 102028
- Guo J, Yu W, Li M et al (2023) A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility. Mol Cell 83, 1710-1724 e1717
- Huang J, Lin Q, Fei H et al (2023) Discovery of deaminase functions by structure-based protein clustering. Cell 186, 3182-3195 e3114
- Lee S, Lee H, Baek G et al (2022) Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol 23, 211
- Lim K, Cho SI and Kim JS (2022) Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat Commun 13, 366
- Willis JCW, Silva-Pinheiro P, Widdup L, Minczuk M and Liu DR (2022) Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat Commun 13, 7204
- Mok YG, Lee JM, Chung E et al (2022) Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nat Commun 13, 4038
- Wei Y, Li Z, Xu K et al (2022) Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov 8, 27
- Lei Z, Meng H, Liu L et al (2022) Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 606, 804-811 https://doi.org/10.1038/s41586-022-04836-5
- Lee S, Lee H, Baek G and Kim JS (2023) Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. Nat Biotechnol 41, 378-386 https://doi.org/10.1038/s41587-022-01486-w
- Guo J, Chen X, Liu Z et al (2022) DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. Mol Ther Nucleic Acids 27, 73-80 https://doi.org/10.1016/j.omtn.2021.11.016
- Chen X, Liang D, Guo J et al (2022) DdCBE-mediated mitochondrial base editing in human 3PN embryos. Cell Discov 8, 8
- Yi Z, Zhang X, Tang W et al (2023) Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat Biotechnol, 1-12. https://doi.org/10.1038/s41587-023-01791-y
- Hu J, Sun Y, Li B et al (2023) Strand-preferred base editing of organellar and nuclear genomes using CyDENT. Nat Biotechnol, 1-10. https://doi.org/10.1038/s41587-023-01910-9
- Paunovska K, Loughrey D and Dahlman JE (2022) Drug delivery systems for RNA therapeutics. Nat Rev Genet 23, 265-280 https://doi.org/10.1038/s41576-021-00439-4
- Degors IMS, Wang C, Rehman ZU and Zuhorn IS (2019) Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors. Acc Chem Res 52, 1750-1760 https://doi.org/10.1021/acs.accounts.9b00177
- Lee H, Lee S, Baek G et al (2021) Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun 12, 1190
- Silva-Pinheiro P, Mutti CD, Van Haute L et al (2023) A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat Biomed Eng 7, 692-703 https://doi.org/10.1038/s41551-022-00968-1
- Guo J, Zhang X, Chen X et al (2021) Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov 7, 78
- Sabharwal A, Kar B, Restrepo-Castillo S et al (2021) The FusX TALE Base Editor (FusXTBE) for rapid mitochondrial DNA programming of human cells in vitro and zebrafish disease models in vivo. CRISPR J 4, 799-821
- Qi X, Chen X, Guo J et al (2021) Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing. Cell Discov 7, 95
- Qi X, Tan L, Zhang X et al (2023) Expanding DdCBE-mediated targeting scope to aC motif preference in rat. Mol Ther Nucleic Acids 32, 1-12 https://doi.org/10.1016/j.omtn.2023.02.028
- Tan L, Qi X, Kong W et al (2023) A conditional knockout rat resource of mitochondrial protein-coding genes via a DdCBE-induced premature stop codon. Sci Adv 9, eadf2695
- Wei Y, Xu C, Feng H et al (2022) Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE. Cell Discov 8, 7
- Wang D, Tai PWL and Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18, 358-378 https://doi.org/10.1038/s41573-019-0012-9
- Silva-Pinheiro P, Nash PA, Van Haute L, Mutti CD, Turner K and Minczuk M (2022) In vivo mitochondrial base editing via adeno-associated viral delivery to mouse postmitotic tissue. Nat Commun 13, 750
- Lek A, Wong B, Keeler A et al (2023) Death after High-Dose rAAV9 gene therapy in a patient with Duchenne's Muscular Dystrophy. N Engl J Med 389, 1203-1210 https://doi.org/10.1056/NEJMoa2307798
- Kang BC, Bae SJ, Lee S et al (2021) Chloroplast and mitochondrial DNA editing in plants. Nat Plants 7, 899-905 https://doi.org/10.1038/s41477-021-00943-9