• Title/Summary/Keyword: Cycle loading

Search Result 532, Processing Time 0.023 seconds

Prediction of Thermal Fatigue Life on $\mu$BGA Solder Joint Using Sn-3.5Ag, Sn-3.5Ag-0.7Cu, and Sn-3.5Ag-3.0In-0.5Bi Solder Alloys (Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-3.0In-0.5Bi Solder를 이용한 $\mu$BGA Solder접합부의 열피로 수명예측)

  • 김연성;김형일;김종민;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • This paper describes the numerical prediction of the thermal fatigue life of a $\mu$BGA(Micro Ball Grid Array) solder joint. Finite element analysis(FEA) was employed to simulate thermal cycling loading for solder joint reliability. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. The results show that Sn-3.5mass%Ag solder had the longest thermal fatigue life in low cycle fatigue. Also a practical correlation for the prediction of the thermal fatigue life was suggested by using the dimensionless variable ${\gamma}$, which was possible to use several lead free solder alloys for prediction of thermal fatigue life. Furthermore, when the contact angle of the ball and chip has 50 degrees, solder joint has longest fatigue life.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

Seismic behavior of fiber reinforced cementitious composites coupling beams with conventional reinforcement

  • Liang, Xingwen;Xing, Pengtao
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.261-271
    • /
    • 2018
  • Fiber reinforced cementitious composites (FRCC) materials that exhibit strain-hardening and multiple cracking properties under tension were recently developed as innovative building materials for construction. This study aims at exploring the use of FRCC on the seismic performance of coupling beams with conventional reinforcement. Experimental tests were conducted on seven FRCC precast coupling beams with small span-to-depth ratios and one ordinary concrete coupling beam for comparison. The crack and failure modes of the specimens under the low cycle reversed loading were observed, and the hysteretic characteristics, deformation capacity, energy dissipation capacity and stiffness degradation were also investigated. The results show that the FRCC coupling beams have good ductility and energy dissipation capacities compared with the ordinary concrete coupling beam. As the confinement stirrups and span-to-depth ratio increase, the deformation capacity and energy dissipation capacity of coupling beams can be improved significantly. Finally, based on the experimental analysis and shear mechanism, a formula for the shear capacity of the coupling beams with small span-to-depth ratios was also presented, and the calculated results agreed well with the experimental results.

Influence of Stress Ratio of Elastic Waves Generated by Fatigue Crack Growth and Penetration in 6061 Aluminum Plates (6061알루미늄의 피로 균열 성장과 관통에 따른 탄성파의 응력비 영향)

  • Ahn Seok Hwan;Kim Jin Wook;Nam Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.822-827
    • /
    • 2005
  • The characteristics of elastic waves emanating from crack initiation and propagation in 6061 aluminum alloy subjected to fatigue loading with different stress ratio was investigated. The objective of this study is to determine the properties of the signals generated from each stage of fatigue crack growth. AS a crack propagates, substantial elastic wave occurred just prior to penetration. Then it decreased and the crack penetrated. The waveforms and their power spectra were found to be dependent on the different stress ratio associated with the signals. It is determined that high-frequency signal $0.5{\sim}0.75$ MHz is most likely emitted during crack propagation at peak load of fatigue cycle which release the highest energy. It is determined that 0.3 MHz is closely related to crack closure effect. The frequency peaks below 0.25 MHz may be attributed to fretting or hydraulic noise.

Development of Integrated Fatigue Strength Assessment System (피로강도평가를 위한 통합 전산 시스템의 개발)

  • Park, Jun-Hyeop;Song, Ji-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.264-274
    • /
    • 2001
  • An integrated fatigue strength assessment system was computerized. The system developed consists of 9 modules: user interface, cycle counting, load history construction, data searching, fatigue properties estimation, fatigue data analysis, true stress and strain analysis, expert system for crack initiation life prediction, fatigue crack initiation and propagation life prediction. Fatigue strength database also was included in this system. The fatigue expert system helps a beginner to predict a fatigue crack initiation life in fatigue strength assessment. The expert system module in this system is developed on the personal computer by using C language and UNiK, an expert system developing tool. To evaluate the system, the results of test under variable loading of SAE and failure data from a field were analyzed. The evaluation show that the system provided fatigue life prediction within 3-scatter band and gave reasonable predictions. To get more accurate predictions of fatigue life without fatigue properties, we recommend utilizing the system along with the fatigue strength database.

Simultaneous Detection of Biomolecular Interactions and Surface Topography Using Photonic Force Microscopy

  • Heo, Seung-Jin;Kim, Gi-Beom;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.402.1-402.1
    • /
    • 2014
  • Photonic force microscopy (PFM) is an optical tweezers-based scanning probe microscopy, which measures the forces in the range of fN to pN. The low stiffness leads proper to measure single molecular interaction. We introduce a novel photonic force microscopy to stably map various chemical properties as well as topographic information, utilizing weak molecular bond between probe and object's surface. First, we installed stable optical tweezers instrument, where an IR laser with 1064 nm wavelength was used as trapping source to reduce damage to biological sample. To manipulate trapped material, electric driven two-axis mirrors were used for x, y directional probe scanning and a piezo stage for z directional probe scanning. For resolution test, probe scans with vertical direction repeatedly at the same lateral position, where the vertical resolution is ~25 nm. To obtain the topography of surface which is etched glass, trapped bead scans 3-dimensionally and measures the contact position in each cycle. To acquire the chemical mapping, we design the DNA oligonucleotide pairs combining as a zipping structure, where one is attached at the surface of bead and other is arranged on surface. We measured the rupture force of molecular bonding to investigate chemical properties on the surface with various loading rate. We expect this system can realize a high-resolution multi-functional imaging technique able to acquire topographic map of objects and to distinguish difference of chemical properties between these objects simultaneously.

  • PDF

Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation

  • Lais, Stefan;Liang, Quanwei;Henggeler, Urs;Weiss, Thomas;Escaler, Xavier;Egusquiza, Eduard
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.303-314
    • /
    • 2009
  • The present paper shows the results of numerical and experimental modal analyses of Francis runners, which were executed in air and in still water. In its first part this paper is focused on the numerical prediction of the model parameters by means of FEM and the validation of the FEM method. Influences of different geometries on modal parameters and frequency reduction ratio (FRR), which is the ratio of the natural frequencies in water and the corresponding natural frequencies in air, are investigated for two different runners, one prototype and one model runner. The results of the analyses indicate very good agreement between experiment and simulation. Particularly the frequency reduction ratios derived from simulation are found to agree very well with the values derived from experiment. In order to identify sensitivity of the structural properties several parameters such as material properties, different model scale and different hub geometries are numerically investigated. In its second part, a harmonic response analysis is shown for a Francis runner by applying the time dependent pressure distribution resulting from an unsteady CFD simulation to the mechanical structure. Thus, the data gained by modern CFD simulation are being fully utilized for the structural design based on life time analysis. With this new approach a more precise prediction of turbine loading and its effect on turbine life cycle is possible allowing better turbine designs to be developed.

A Study on the Fatigue Strength of the Reinforced Concrete Beams Repaired with Glass Fiber Reinforced Polymer(GFRP) Bar and Glass Fiber Steel Plate(GSP) (GFRP Bar 및 GSP로 보수된 철근 콘크리트 보의 피로강도 연구)

  • Kim, Jae-Young;Kim, Chung-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.191-195
    • /
    • 2009
  • After developing the pre-crack to simulate a damaged reinforced concrete beam, fatigue test was conducted on the beam repaired by GFRP Bar and GSP embedded method. In the result of fatigue test, most residual displacement and crack of the experimental beams occurs in the early loading cycle and an increasing rate of these due to number of cycles were insignificant. Comparing with a non-repaired beam, a static strength of the repaired beam greatly increased, but fatigue strength decreased. In S-N curves, fatigue strength of the beam repaired by GFRP Bar and GSP was 58%, 52% of the static strength respectively.

Stress based Fatigue Life Prediction for Ball Bearing (볼 베어링의 응력 기반 접촉피로수명 예측)

  • Kim, Tae-Wan;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.44-55
    • /
    • 2007
  • The method for fatigue life prediction of ball bearing is proposed applying the algorithm of contact fatigue prediction based on stress analysis. In order to do this, a series of simulation such as initial surface stress analysis, EHL analysis, subsurface stress analysis and fatigue analysis are conducted from the loading at each ball location calculated for a bearing subjected to external bearing load and contact shape function. And uniaxial fatigue tests are performed to obtain fatigue parameter of AISI 52100 steel. It was found that since stress is usually higher at the inner raceway contact than at the outer raceway contact, fatigue failure occurs on the inner raceway first. When the fatigue life calculated in the stress-based method are compared with L50 life of L-P model, Crossland criterion for the radial load increment is similar to L50 life and Dang Van criterion for the axial load increment is similar. In the case of EHL contact, there is no difference of fatigue life between dry contact and EHL contact, when maximum Hertz pressure exceeds 2.5GPa.

Strain energy-based fatigue life prediction under variable amplitude loadings

  • Zhu, Shun-Peng;Yue, Peng;Correia, Jose;Blason, Sergio;De Jesus, Abilio;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.151-160
    • /
    • 2018
  • With the aim to evaluate the fatigue damage accumulation and predict the residual life of engineering components under variable amplitude loadings, this paper proposed a new strain energy-based damage accumulation model by considering both effects of mean stress and load interaction on fatigue life in a low cycle fatigue (LCF) regime. Moreover, an integrated procedure is elaborated for facilitating its application based on S-N curve and loading conditions. Eight experimental datasets of aluminum alloys and steels are utilized for model validation and comparison. Through comparing experimental results with model predictions by the proposed, Miner's rule, damaged stress model (DSM) and damaged energy model (DEM), results show that the proposed one provides more accurate predictions than others, which can be extended for further application under multi-level stress loadings.