• Title/Summary/Keyword: Cycle Based Evaluation

Search Result 576, Processing Time 0.025 seconds

Life-Cost-Cycle Evaluation Analysis of the Shunting Locomotive (입환기관차의 LCC 평가분석)

  • Chung Jong-Duk;Kim Jeong-Guk;Pyun Jang-Sik;Kim Pil-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.551-556
    • /
    • 2004
  • The deterioration of a shunting locomotive was characterized for the lifetime assessment. The locomotive has been used for shunting works in steel making processes, and in this investigation, various types of technical evaluation methods for the locomotive parts were employed to assess the current deterioration status and to provide important clue for lifetime prediction. Unlike other rolling stocks in railway applications, the diesel shunting locomotive is composed of major components such as diesel engine, transmission, gear box, brake system, electronic devices, etc., which cover more than 70 percent of the total price of the locomotive. Therefore, in this paper, each part of major components in the diesel locomotive was analyzed in terms of the degree of deterioration. The life-cycle-cost (LCC) analysis was performed based on the maintenance and repair history as compared with economical cost to provide the cost-effective prediction, i.e., to assess either repair for reuse or putting the locomotive out of service based on cost-effective calculation.

  • PDF

THE RESEARCH ON CONCEPTUAL MODEL OF LNG PLANT PROJECT PLANNING EXPERT SYSTEM

  • Moon-Sun Park;Young-Ai Kim;Seung-Wook Lee;Sung-Ryul Bae;Hyun-Wook Kang;Byoung-Jun Min;Yong-Su Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1570-1575
    • /
    • 2009
  • The purpose of this research is to propose the conceptual model of Scenario-based Project Planning Expert System which has not been used in domestic LNG plant industry. This research examines data on the plant project planning expert system of domestic and oversea, analyzes the components of project planning expert systems and benchmark excellent cases. The conceptual model of LNG plant project planning expert system is established through the procedure as has been noted above. The results of this research are as follows: First, this research draws out such components of LNG plant project planning expert system as feasibility, cost control, contract management and risk management. Second, this research proposes the conceptual model of LNG plant project planning expert system which core module is consist of feasibility evaluation, life cycle cost evaluation and decision making. Finally, each module of LNG plant project planning expert system would be integrated into the Scenario-based Project Planning Expert System.

  • PDF

Whole Life Performance Bid Evaluation in the Korean Public Sector

  • Park, Kenneth Sungho;Lim, Hyoung-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.682-700
    • /
    • 2012
  • Over the last several years, Korea has increasingly adopted design-build for public construction projects. There is a much greater awareness of the need to change to a system based on 'Value for Money', which is high on the government's agenda. A whole life performance bid evaluation model is proposed to aid decision makers in the selection of a design-builder. This is based on the integration of a framework using an analytic hierarchy process, as the bid awarding system is being changed from one based on the lowest price to one based on best value over the life-cycle. Key criteria such as whole life cost, service life planning and design quality are important through the key stages of the evaluation process. The model uses a systematic and holistic approach, which enables the public sector client to make better decisions in design-builder selection, which will deliver whole life benefits based on long-term cost-effectiveness.

An Integrated Multicriteria Decision-Making Approach for Evaluating Nuclear Fuel Cycle Systems for Long-term Sustainability on the Basis of an Equilibrium Model: Technique for Order of Preference by Similarity to Ideal Solution, Preference Ranking Organization Method for Enrichment Evaluation, and Multiattribute Utility Theory Combined with Analytic Hierarchy Process

  • Yoon, Saerom;Choi, Sungyeol;Ko, Wonil
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.148-164
    • /
    • 2017
  • The focus on the issues surrounding spent nuclear fuel and lifetime extension of old nuclear power plants continues to grow nowadays. A transparent decision-making process to identify the best suitable nuclear fuel cycle (NFC) is considered to be the key task in the current situation. Through this study, an attempt is made to develop an equilibrium model for the NFC to calculate the material flows based on 1 TWh of electricity production, and to perform integrated multicriteria decision-making method analyses via the analytic hierarchy process technique for order of preference by similarity to ideal solution, preference ranking organization method for enrichment evaluation, and multiattribute utility theory methods. This comparative study is aimed at screening and ranking the three selected NFC options against five aspects: sustainability, environmental friendliness, economics, proliferation resistance, and technical feasibility. The selected fuel cycle options include pressurized water reactor (PWR) once-through cycle, PWR mixed oxide cycle, or pyroprocessing sodium-cooled fast reactor cycle. A sensitivity analysis was performed to prove the robustness of the results and explore the influence of criteria on the obtained ranking. As a result of the comparative analysis, the pyroprocessing sodium-cooled fast reactor cycle is determined to be the most competitive option among the NFC scenarios.

An Evaluation on the Limit cycle Analysis Methods using the Hardware in the Loop Simulation (실시간 모의시험을 통한 리밋 사이클 해석 결과 분석)

  • Jeon, Sang-Woon
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.145-157
    • /
    • 2012
  • The novel limit cycle analysis of the attitude control system using jet thrusters was presented based on a phase plane method by paper. It was shown in the software simulation results that the analysed results of the limit cycle was more accurate than those of the Haloulakos' method. But it was not verified in the real system. The proposed method is verified in the reaction control system for KSLV-I via an real time hardware in the loop simulation. It can be shown in this test that analyzed result of the limit cycle is very accurate.

evaluation of Performance Characteristic on Triple Effect Absorption Cycle (삼중효용 흡수사이클의 성능특성 평가)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

Performance Characteristics on the Mixed Flow Type Absorption Chiller-Heater (혼합흐름 사이클용 흡수식 냉온수기의 성능특성)

  • Yoon, J.I.;Shin, G.B.;Park, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.351-360
    • /
    • 1996
  • This study focuses on the development and evaluation of the high efficiency absorption chiller-heater, which can be applied to a direct gas fired, double effect system with 40RT (508,000kJ) cooling capacity. The performance of the absorption chiller-heater is investigated through cycle simulation and experiment to obtain the system characteristics with the inlet tenperature of cooling, chilled water, and gas input flow rate. The efficiency of the different cycles has been studied and the simulation and experiment results show that higher coefficient of performance could be obtained for mixed flow cycle. The five percent difference was obtained from the comparison between experimental and cycle simulation results. As a result of this study, the optimum designs were determined based on the operating conditions and the coefficient of performance.

  • PDF

Application of High Performance Coatings for Service Life Extension of Steel Bridge Coatings

  • Lee, Chan-Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.169-174
    • /
    • 2021
  • In this study, performance tests, a field evaluation, and a life cycle cost (LCC) analysis for high performance coating systems were conducted to prepare a plan to reduce the cost of maintenance coating and contribute to the service life extension of steel bridges by applying high performance coatings to steel bridges that will be constructed in the future. From the deterioration models based on the field evaluation for chlorinated rubber and urethane topcoat systems, which have been applied often, the mean service lives were derived as 20.8 and 26.6 years, respectively. For the other coating systems that have not been applied in practice, the coordination factors were differentially applied with evaluation items. The most durable coating system was predicted to be thermal spray coating (TSC) primer/epoxy intermediate coat/fluoride resin topcoat, with a predicted value as long as 42.2 years. The LCC analysis indicates that partial application of high performance coating, such as TSC and fluoride resin, to specific parts vulnerable to corrosion and ultraviolet ray (UV) is more advantageous than the use of general coating systems.

A Study on the Reliability Improvement of Guided Missile (유도탄의 신뢰성 향상 방안 고찰)

  • Kim, Bohyeon;Hwang, Kyeonghwan;Hur, Jangwook
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.208-215
    • /
    • 2016
  • Purpose: ASRP for the domestic development guided missiles requires not only for the reliability evaluation of the products in storage but also for the life cycle management of the products including development prototypes and initial production items. Methods: For this purpose, it should be performed to build a performance database before and after the accelerated aging test with shelf life items including development prototypes and initial production items, based on which the lifetime prediction should also be carried out. In addition, HILS must be applied for the acceptance test with the initial and follow-up production items, and also for ASRP for the long-term storage products in order to secure systematic quality assurance. Results: The results for the life cycle reliability Improving of domestic development of guided missiles are DB building of prescription Item performance, active application of HILS, Management associated with guided missiles life cycle and to Secure technology data about the introduction of foreign guided missiles. Conclusion: Furthermore, it is demanded that DTaQ, the managing agency of ASRP, actively take part in the process to maintain reliability engagement consistency over the life cycle of guided missiles.

A Study on the Calculation Method of the Elastomeric Bearing Life Cycle Inventory (LCI) Database to Improve Reliability of Evaluation of Environmental Load of Bridges (교량의 환경부하평가 신뢰성 향상을 위한 교량용 탄성받침 전과정목록 산정방법에 관한 연구)

  • Wie, Deahyung;Kim, Youngchun;Kwak, Inho;Hwang, Yongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.681-691
    • /
    • 2017
  • In this research, life cycle inventory database (LCI DB) was developed for elastomeric bearing employing life cycle assessment (LCA) methodology additionally the reliability improvement rate in the evaluation of the environmental load of the bridge was analyzed. As are result of impact assessment by 6 major impact categories, production of elastomeric bearing puts on environmental impact in the order of resource depletion, global warming, photochemical oxidant creation. and among a wide variety of input, steel plates contributes in most of the impact categories. As a result of applying the elastomeric bearing LCI database constructed in this study, the environmental loads increased by 0.53% on average, and the cut-off based on the cost of input materials increased by 11.36%. It is anticipated that it will be possible to improve the credibility and to provide data based on current production technology, such as estimating GHG emissions and evaluating environmental load, by constructing elastomeric bearing LCI DB.