• Title/Summary/Keyword: Cutting system

Search Result 1,890, Processing Time 0.029 seconds

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

Location Technique of Cutting Area Used by GPS Augmentation System (GPS보정항법 시스템을 활용한 절개지 위치조사 기법)

  • Kang, Ho-Yun;Kang, In-Joon;Song, Suk-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.629-635
    • /
    • 2009
  • Collapses of cutting area have frequently occurred due to heavy rainfall caused by the recent unusual weather patterns. Collapses of cutting area have the most crucial influence on the damaged property and casualties. Therefore, formulating and preparing an effective measures and control system is urgent. For this reason, in this study, we researched formation investigation method of location-based cutting area for an efficient management of cutting area. We conducted comparative and analytic research on the hand GPS method and DGPS method which is GPS augmentation system, using SBAS signals. The results of the research showed that there was difficult in discerning the accurate shape of cutting area when the existing method was used; however, the detecting the shape of four sides and accurate location was possible when DGPS was used. Consequently, it is possible to establish a preventive measures for cutting area, which considers the condition of the surrounding environment of cutting area because the polygon based management of incision cliff is attainable, apart from the existing control point based approach.

The Comparison of Cutting Characteristics of PCD and MCD Tools in the Ultraprecision Turning of Aluminum Alloy (알루미늄 합금의 초정밀 선삭 가공에 있어서 PCD와 MCD 공구의 절삭 특성 비교)

  • Kim, Hyeong-Cheol;Ham, Seung-Deok;Hong, U-Pyo;Park, Yeong-U;Kim, Gi-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.68-75
    • /
    • 2000
  • This paper presents the construction of an ultra-precision machining system and machining experiments using the developed system. The system is composed of air bearing system, granite bed, air pad, and linear feeding mechanism. The cutting conditions have great effect on the surface quality in ultra-precision machining. the ultra-precision machining is mainly processed by several ${\mu}{\textrm}{m}$ depth of cut and feed rate. For this, tools with sharper cutting edge and less tool wear are needed. To satisfy these requirement, diamond is generally used as a tool material for ultra-precision machining. In order to evaluate the cutting characteristics of the PCD and MCD tools on the aluminum alloy, the machining experiments performed using the developed system.

  • PDF

Implementation of Paper Cutting Defect Detection System Based on Local Binary Pattern Analysis (국부 이진 패턴 분석에 기초한 지절 결함 검출 시스템 구현)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 2013
  • Paper manufacturing industries have huge facilities with automatic equipments. Especially, in order to improve the efficiency of the paper manufacturing processes, it is necessary to detect the paper cutting defect effectively and to classify the causes correctly. In this paper, we review the problems of web monitoring system and web inspection system that have been traditionally used in industries for defect detection. Then we propose a novel paper cutting defect detection method based on the local binary pattern analysis and its implementation to mitigate the practical problems in industry environment. The proposed algorithm classifies the defects into edge-type and region-type and then it is shown that the proposed system works stably on the real paper cutting defect detection system.

A Study on the Integrated Unrolling, Cutting, and Softening System of Round Bale Silage for Pig Feeding (I) (양돈 급여에 적합한 원형베일 사일리지 해체·세절·연화 일관시스템 연구 (I))

  • Hong, Jong-Tae;Kim, Hyuck-Joo;Yu, Byeong-Kee;Hyun, Chang-Sig;Kim, Sung-Kee;Yoo, Ji-Soo;Hong, Young-Sin;Seo, Hung-Dug
    • Journal of Animal Environmental Science
    • /
    • v.19 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • Currently, there was no producing system of TMR for pig feeding in Korea. In this study, we examined unrolling, cutting, and softening for the round bale silage. We designed and developed the prototype system of round bale silage for pig feeding. Unroll method were lower chain conveying and upper belt conveying which includes an hydraulic vertical fodder knife. Gathering and cutting method were rotating auger and flywheel which have 10 cutters, input roller of 280 rpm, and cutter rotating speed of 1,750 rpm. Softening device was rotating hammer in inclined cylinder adjustable to $25^{\circ}C$ and rotating speed up to 1,300 rpm. The prototype system was integrated working for unrolling, cutting, and softening. We found that when the round bale silage in unrolling apparatus cut length of 20 cm to input cutting apparatus, the cutting performance was well in continuous working up to input rate of 1,000 kg/h, the softening apparatus was working well.

A Study on the Wear Monitoring Technique for Diamond Core Drill (다이아몬드 코어 드릴의 마멸 검출에 관한 연구)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.38-45
    • /
    • 1995
  • The diagnosis and monitoring system of abnormal cutting condition is necessary to realize precision machining proces and factory automation, which are final goal of metal cutting in order to develop this system, theimage processing technique has been investigated in machining process. In theis paper, the measurement system of tool wear using computer vision is designed to detect the wear pattern by non-contact and direct method and get the realiable wear information about cutting tool. We measured the area of the side and front part of the diamond core dril which is used in 40kHz ultrasonic vibration machine.

  • PDF

밀링가공의 절삭조건 검증시스템 개발

  • 김찬봉;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.428-433
    • /
    • 1993
  • In this paper, the fast algorithm to calculate cutting force of milling and its application to NC verification system have been studied. The fast force algorithm can calculate the maximum cutting force fastly during one revelotion of tool. The NC verification using the fast force algorithm can verify excessive cutting force which is the cause of deflection and breakage of tool, and can so adjust the feed rate as to manufacture with the maximum force criterion or maximum machining error criterion. So, the fast force algorithm has been added to the NC verification system, the NC verification system can verify the physical problems in NC code effectively.

  • PDF

Conceptual Design of Cutting System by Qualitative Reaoning (정성 추론에 의한 절삭 시스넴의 개념 설계)

  • 김성근;최영석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.531-535
    • /
    • 1996
  • Computer aided conceptual solution of engineering problems can be effectively implemented by qualitative reasoning based on a physical model. Qualitative reasoning needs modeling paradigm which provides intellignet control of modeling assumptions and robust inferences without quantitative information about the system. We developed reasoning method using new algebra of qualitative mathematics. The method is applied to a conceptual design scheme of anadaptive control system of cutting process. The method identifies differences between proportional and proportional-integral control scheme of cutting process. It is shown that unfeasible investment could be prevented in the early conceptual stage by the qualitative reasoning procedures proposed in this paper.

  • PDF

Detection of Tool Wear using Cutting Force Measurement in Turning (선삭가공에서 절삭력을 이용한 공구마멸의 감지)

  • 윤재웅;이권용;이수철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.68-75
    • /
    • 2000
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system. A major topic relevant to metal-cutting operations is monitoring tool wear, which affects process efficiency and product quality, and implementing automatic tool replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. Cutting force components are divided into static and dynamic components in this paper, and the static components of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force disparities are defined in this paper, and the relationships between normalized disparity and flank wear are established. Finally, Artificial neural network is used to learn these relationships and detect tool wear. According to the proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

A Study on Damage Detection of Cutting Tool Using Neural Network and Cutting Force Signal (신경망과 절삭력신호 특성을 이용한 공구이상상태 감지에 관한 연구)

  • Lim, K.Y.;Mun, S.D.;Kim, S.I.;Kim, T.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.48-55
    • /
    • 1997
  • A useful method to detect tool breakage suing neural network of cutting force signal is porposed and implemented in a basic cutting process. Cutting signal is gathered by tool dynamometer and normalized as a preprocessing. The cutting force signal level is continually monitored and compared with the predefined level. The neural network has been trained normalized sample data of the normal operation and cata-strophic tool failure using backpropagation learning process. The develop[ed system is verified to be very effective in real-time usage with minor modification in conventional cutting processes.

  • PDF