• Title/Summary/Keyword: Cutting stability

Search Result 273, Processing Time 0.023 seconds

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

Reliability-based Optimization for Rock Slopes

  • Lee, Myung-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF

A Study of Improvement the Productivity of the Industrial System using Electronics and Computer Technology (전자장비와 컴퓨터기술을 이용한 산업시스템의 생산성 개선에 관한 연구)

  • Lee, Keun-Ho;Ryu, Gab-Sang
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.593-598
    • /
    • 2014
  • To solve the labor shortage of skilled workers, the ship building industry needs the automation and mechanization. Especially, compared with other process, handrail manufacturing process of ship building falls behind the automation. In this paper, we designed and implemented a flat-iron automation system using computer convergence technology that can be used in the production of handrails in shipbuilding. The system's machine part was designed by considering the efficiency, productivity, and stability of the cutting process, and checked the stability of the structure using CATIA and ANSYS. The system's control part was used the PCNC controller to provide openness and scalability. And the part was made for system control and monitoring the system through screen manipulation with touch-screen form. A flat-iron automatic system was developed by converging the mechanics, electronics and computer technology and it will contribute to improve the productivity of the industrial system.

Investigating Structural Stability and Constructability of Buildings Relative to the Lap Splice Position of Reinforcing Bars

  • Widjaja, Daniel Darma;Rachmawati, Titi Sari Nurul;Kwon, Keehoon;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.315-326
    • /
    • 2023
  • The design principles and implementation of rebar lap splice in architectural structures are governed by building regulations. Nevertheless, the minimization of rebar-cutting waste (RCW) is often impeded by the mandatory requirements pertaining to the rebar lapping zone as prescribed in design codes. In real-world construction scenarios, compliance with these rules often falls short due to hurdles concerning productivity, quality, safety, time, and cost. This discrepancy between code stipulations and on-the-ground construction practices necessitates an academic exploration. The goal of this research was to delve into the effect of rebar lap splice placement on the robustness and constructability of building edifices. The study initially took on a review of the computation of rebar lapping length and the rules revolving around the lapping zone. Following this, a structural robustness and constructability examination was undertaken, focusing on adherence to the lap splice zone. The interpretations and deductions of the research led to the following insights: (1) the efficacy of rebar lap splice is not solely contingent on the moment, and (2) the implementation of rebar lap splice beyond the specified zone can match the structural integrity and robustness of those confined within the designated area. As a result, the constraints on the rebar lapping zone ought to be revisited and possibly relaxed. The conclusions drawn from this research are anticipated to reconcile the disconnect between building codes and practical construction conditions, furnishing invaluable academic substantiation to further the endeavor of achieving near-zero RCW.

Reliability-Based Analysis for Rock Slopes Considering Failure Modes (파괴형태를 고려한 암반사면의 신뢰도해석)

  • 이인모;이명재
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.3-16
    • /
    • 1999
  • This paper presents the results of sensitivity analysis based on an example study to verify a newly developed reliability-based model for rock slopes considering uncertainties of discontinuities and failure modes-plane, wedge, and toppling. The parameters that are needed for sensitivity analysis are the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and the rock slope geometry. The variability in orientation and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a great influence on the rock slope stability, The stability of rock slopes including failure modes is more influenced by the selection of dip direction of cutting rock face than any other design variables, The example study shows that the developed reliability-based analysis model can reasonably assess the stability of rock slope.

  • PDF

A Consideration about Stability Investigation method of Failure Cut-Slope Covered by Vegetation (식생공이 시공된 붕괴절토사면의 안정성 검토기법에 관한 고찰)

  • Yoo, Ki-Jeong;Koo, Ho-Bon;Rhee, Jong-Hyun;Kim, Seung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.725-730
    • /
    • 2005
  • In case of the national roads which is opened in the past, there are carried out the expansion and improvement for enlargement of the traffic demand by industrial development and safety road operation to narrow of road width and serious change of the road alignment with effect of topography and graphical features of a mountain. A protection method using vegetation in the cut-slope has been constructed for harmony of ambient environment after cutting the slope recently. But it requires a study because the surface lose and the failure have been occurred in the large cut-slope which is covered by vegetation. In this study it was presented a countermeasure and examined a stability of contained uncertainty in the cut-slope according to the failure example of the cut-slope which is covered by vegetation. The additional research will be necessary against the development of the investigation technique which executes the stability investigation of the cut-slope which is covered by vegetation.

  • PDF

A Study on the Stability Evaluation of Soil Slope according to inclination of upper Natural Slope (상부자연사면 경사에 따른 토사사면의 안정성 평가에 관한 연구)

  • Lee, Jeong-Yeob;Kim, Jin-Hwan;Lee, Jong-Hyun;Gu, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.580-585
    • /
    • 2004
  • The purpose of this study is the stability evaluation of soil slope according to inclination of upper natural slope. Upper natural slope breeds loss of slope by inflow in slope of surface water by rainfal1 and f1uctuation of amount of materials in slope through method of cutting slope according to degree of inclination. Basis of standard inclination does not consider of inclination of upper natural slope and is presented uniformly. Therefore, in this study, analyzed stability of inclination of upper natural slope through limit equilibrium analysis. Result is same as following. First, safety factor through limit equilibrium analysis is almost direct decrease when gradient of soil slope is 1:1.2, 1:1.5. However, when gradient of soil slope is 1:1.0, 1:0.7, if sinclination of upper natural slope are $20^{\circ}$, it shows tendency that decrease of safety factor becomes low rapidly. Second, when when gradient of soil slope is fixed, inclination of upper natural slope increase tendency(maximum 3.0 times) that decrease of safety factor.

  • PDF

A Case Study on the Vibration Propagation Characteristics by Underwater Rock Cutting Work (수중 쇄암작업에 따른 진동 전파 특성에 관한 시공 사례)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Kim, Young-Min;Lee, Chung-Eon
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.25-39
    • /
    • 2015
  • The common underwater rock removal methods involve underwater blasting and crane's chisel dropping impact method. From an environmental point of view, these methods cause ground vibrations and underwater noise. At the site for this study, a method of dropping heavyweight chisel is selected to remove the underwater bedrock near the ferry rack in the course of improving the cargo handling ability of the loading dock. A prediction formula for the vibration was obtained based on the measurement and evaluation of the vibrations caused by the chisel dropping impacts during the test droppings. The prediction formula was successfully applied to the main construction for securing the stability of the structure.

A Study on the Optimum Shape of MQL Carbide End-mill for Machining of Aluminum Lithium Alloy (Al-Li 합금 가공용 MQL 초경공구의 최적 형상에 관한 연구)

  • Lee, In-Su;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.159-166
    • /
    • 2013
  • In order to develop the optimum shape of an MQL carbide end-mill suitable for high speed machining of wing ribs which are a detailed part of larger wing structures, using a new material Al-Li alloy, a new MQL carbide end-mill is created that has various quantities of holes, hole sizes, and hole locations. A theoretical machining graph is generated using the hammer test and FRF simulation, and a machining test is performed in order to verify the machining stability in the high speed machining area. The optimum configuration of the MQL carbide end-mill is also presented through comparing the chattering, machining noise and cutting conditions, including the maximum cutting depth, rpm, and feed rate per teeth, for each cutter.

A Study on the Direction of the Development of Hearable Devices for Seniors -Focusing on Wireless Earphones- (시니어를 위한 히어러블 디바이스 개발 방향성 연구 -무선 이어폰을 중심으로-)

  • Kijeong, Choi;Seunghee, Suh
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.135-152
    • /
    • 2022
  • This study aimed to evaluate the user experience of hearable devices for seniors and suggest possible development directions. A literature review, case study, and in-depth interviews were conducted. Based on the literature review, convenience, accessibility, transmissibility, wearability, aesthetics, and interest were determined as the user experience factors of hearable devices. Then, in-depth interviews were conducted with 12 participants aged 60 or older regarding four devices. Participants tried four different types of wireless earphones which were selected based on a case study: open-type, kernel-type, neckband-type, and earring-type. Regarding convenience, the participants preferred to carry small devices and regarding accessibility, participants responded positively for most product types. For transmissibility and wearability, there were differences depending on whether devices were put on correctly, but the participants preferred products that did not wholly block external sounds. For aesthetics, participants preferred small and cutting-edge designs. Interest was noticeable among those who had not used the devices before, and for stability, the neckband-type was the most preferred. Based on the results we suggest designing small cutting-edge designs and button-type assist devices, not blocking the external sound, providing a participation program, simplifying device functions, and establishing a method that can be combined with and stored in clothes and a delivery method that can signal danger.