• Title/Summary/Keyword: Cutting Motion Simulation

Search Result 30, Processing Time 0.024 seconds

High-precision Micro-machining using Vibration Cutting (진동절삭을 이용한 고정도 미세가공)

  • Son, Seong-Min;Lim, Han-Seok;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.72-77
    • /
    • 1999
  • This paper presents 2-dimensional vibration cutting increases dynamic stiffness of tool support and improves the quality of machined surface in micro-machining. 2-dimensional vibration cutting is generated by two piezo actuators arranged orthogonally. A sine-type voltage is input to one actuator and a phase-shifted sine-type voltage is input the other. Then the vibration device actuates the tool in a 2-D elliptical motion with pulsed cutting force. It is a characteristic of 2-D vibration cutting that some negative thrust force occurs as the direction of friction on a tool rake surface is reversed. It helps not only chip flow smoothly and continuously but also cutting force be reduced. The quality of machined surface by 2-D vibration cutting depends on such parameters as vibration amplitude, frequency, cutting speed, depth of cut, etc. Compared to conventional cutting through tool path simulation and experiments under several conditions, the 2-D vibration cutting is verified to bring forth a great decrease of cutting forces, much better surface roughness and moreover much less burr.

  • PDF

A study on the Modeling of Tool Motion and High Accuracy Surface Generation by Use of Cutting Force Signal (절삭력 신호를 이용한 공구운동의 모델링과 고정도 표면생성에 관한 연구)

  • 김정두;이은복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1951-1962
    • /
    • 1993
  • The creation process of a typical machined surface is treated here as a dynamic system. An investigation is carried out to establish a relationship between the characteristics of cutting force fluctuations that cause vibration response of the tool-workpiece system and the formation of surface in face cutting by sintered carbide cutting tool. Cutting force is measured and analyzed in frequency domain. The power spectral densities of cutting force give a useful information in surface generation and it can be used to find out the control factor of surface roughness. The terms, PSD ratio & Normalized spindle frequency PSD, are defined and when the value of power in spindle frequency is absolutely little but relatively large, it is obtained high accuracy surface roughness. The aim of this research is to find surface profile by measured and analyzed cutting force signals. The simulation of surface generation gives the comprechension of its mechanism and help to predict and control the surface quality. In this study, it is suggested what informations about surface generation can be acquired from the cuttuing force signal and an way of generating a better surface.

Adaptive Cross-Coupling Controller for Precision Contour Machining (정밀 윤곽가공을 위한 적응 교차축 연동제어기)

  • 윤상필;지성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. In addition, a real-time federate adaptation scheme is included in the proposed CCC to regulate cutting force. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy and regulates cutting force more effectively than the existing method.

  • PDF

Downward and Upward Air Flow Effects on Fume Particle Dispersion in Laser Line Cutting of Optical Plastic Films

  • Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In improving laser cutting of optical plastic films for mass production of optoelectronics display units, it is important to understand particle contamination over optical film surface due to fume particle generation and dispersion. This numerical study investigates the effects of downward and upward air flow motions on fume particle dispersion around laser cut line. The simulations employ random particle sampling of up to one million fume particles by probabilistic distributions of particle size, ejection velocity and angle, and fume particle dispersion and surface landing are predicted using Basset-Boussinesq-Oseen model of low Reynolds number flows. The numerical results show that downward air flow scatters fume particles of a certain size range farther away from laser cut line and aggravate surface contamination. However, upward air flow pushes fume particles of this size range back toward laser cut line or sucks them up with rising air motion, thus significantly alleviating surface contamination.

A Recursive Algorithm for Generating the Equations of Motion of Spatial Mechanical Systems with Application to the Five-Point Suspension

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.550-559
    • /
    • 2004
  • In this paper, a recursive formulation for generating the equations of motion of spatial mechanical systems is presented. The rigid bodies are replaced by a dynamically equivalent constrained system of particles which avoids introducing any rotational coordinates. For the open-chain system, the equations of motion are generated recursively along the serial chains using the concepts of linear and angular momenta Closed-chain systems are transformed to open-chain systems by cutting suitable kinematic joints and introducing cut-joint constraints. The formulation is used to carry out the dynamic analysis of multi-link five-point suspension. The results of the simulation demonstrate the generality and simplicity of the proposed dynamic formulation.

Dynamic Analysis of a Chain of Rigid Rods

  • Attia, Hazem Ali
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.75-86
    • /
    • 2004
  • In this study, a recursive algorithm for generating the equations of motion of a chain of rigid rods is presented. The methods rests upon the idea of replacing the rigid body by a dynamically equivalent constrained system of particles. The concepts of linear and angular momentums are used to generate the rigid body equations of motion without either introducing any rotational coordinates or the corresponding transformation matrices. For open-chain, the equations of motion are generated recursively along the serial chains. For closed-chain, the system is transformed to open-chain by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a closed-chain of rigid rods is chosen to demonstrate the generality and simplicity of the proposed method.

  • PDF

System identification and admittance model-based nanodynamic control of ultra-precision cutting process (다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

A Study on Post-Processing and Machine Simulation of AC Type 5-Axis Machine Tool for Machining of Mold Surface (금형 곡면 가공을 위한 AC타입 5축 가공기의 포스트프로세싱 및 머신 시뮬레이션에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.30-35
    • /
    • 2021
  • In this study, a machine simulation system was built using the actual scale of an AC-type 5-axis machine tool for mold surface machining that can be used in applications, such as, modeling and machine building, stroke, and collision detection. The validity of the 5-axis machine simulation system was verified by performing tool path generation, post-processing, machine simulation, prototype motion simulation, and an actual cutting experiment. This entire process was intended to activate the 5-axis machining in mold surface machining.

Machining Verification Model Considering Feed Rate for Virtual Milling (가상 밀링에서 이송속도를 고려한 가공 검증 모델)

  • 백대균;고태조;김희술
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.86-92
    • /
    • 2002
  • This paper presents a new model of NC verification in NC milling using z-map. The model can describe the motion of machine tool like a real machine effectively. The model uses x, y, and z directional feed rate as well as cutting data for modeling Z-map of workpiece. The model verifies the over-cut, the under-cut and the surface topography using NC codes and cutting conditions. To investigate the performance of the model, simulation study was carried out. As the results, the model gave the geometry accuracy of workpiece, the surface topography, and the chip loads.

Technologies to Realize High Stiffness Mechatronics Systems in Production Machines (기계장비의 메카트로닉스 고강성화 기술)

  • Lee, Chan-Hong;Song, Chang Kyu;Kim, Byung-Sub;Kim, Chang-Ju;Heo, Segon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.431-439
    • /
    • 2015
  • One of common challenges in designing modern production machines is realizing high speed motion without sacrificing accuracy. To address this challenge it is necessary to maximize the stiffness of the mechanical structure and the control system with consideration on the main disturbance input, cutting forces. This paper presents analysis technologies for realizing high stiffness in production machines. First, CAE analysis techniques to evaluate the dynamic stiffness of a machine structure and a new method to construct the physical machine model for servo controller simulations are demonstrated. Second, cutting forces generated in milling processes are analyzed to evaluate their effects on the mechatronics system. In the effort to investigate the interaction among the structure, controller, and process, a flexible multi-body dynamics simulation method is implemented on a magnetic bearing stage as an example. The presented technologies can provide better understandings on the mechatronics system and help realizing high stiffness production machines.