• Title/Summary/Keyword: Cutting Energy

Search Result 439, Processing Time 0.047 seconds

Laser Cutting Characteristics of Cold Rolled Steel Sheets (레이저를 이용한 박강판의 절단특성)

  • 이기호;김기철;이종훈
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.113-121
    • /
    • 1995
  • This study deals with the quality and the optimum range of laser cutting process. Cold rolled steel sheets for automobile application were cut by a high power CO$_{2}$ laser system with beam quality of TEM$_{\infty}$ mode. Both process parameters such as travel speed and assist gas pressure, and quality factors were considered to optimize the laser cutting. It was revealed that the thinner the sheet thickness, the less effect of oxidation energy for contributing the cutting process. High speed photographs demonstrated that molten spot on the cut surface moved in a random and vigorous manner according to its viscosity and the flowing direction of assist gas, which resulted in so called striation. Laser cutting produced a very smooth surface of average roughness(Ra) about less than 1.5.mu.m at the optimum range. It was also shown that the characteristics of dross formation was influenced by the flowing durection of assist gas and the fluidity of molten metal drop..

  • PDF

Analysis of Shear and Friction chacteristics in End milling with variable cutting condition (Part 1 Up-end milling) (절삭조건에 따른 엔드밀링 가공시 전단 및 마찰 특성 분석(1. 상향 엔드밀링))

  • Lee, Young-Moon;Yang, Seung-Han;Ming Chen;Jang, Seung-Il
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.223-228
    • /
    • 2003
  • In end milling processes, characterized by use of rotating tools, the underformed chip thickness varies periodically with the phase change of tool. In current study, as a new approach to analyse shear behaviors In the shear plane and chip-tool friction behavior chip-tool contact region during an end milling process. In this approach, an up-end milling process is transformed into an equivalent oblique cutting process. Experimental investigations for two sets of cutting tests i.e.. up-end milling and the equivalent oblique cutting test were performed to verify the presented model.

  • PDF

The Prediction and Classification of the Chip Fomation using Cutting Force (절삭력에 의한 칩의 형상분류와 칩형상 예측)

  • 최원식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.40-46
    • /
    • 1998
  • In order to achieve high flexibility in manufacture, chip control is one of the most serious problems at present. The continuous type chip (uncontrolled chip), which interrupts the normal cutting process and damages the operator, tool and workpiece have a higher force ratio. while the controlled chip which is 6 or 9 type and C type, has the values of the force ratio below 0.6 The chips were classified by 4 types. in chip formation and by described chip history during the cutting process. Finally, the feasibility of utilizing force ratios in chip control will be pointed out while comparing generated force signals during the cutting process.

  • PDF

An Experimental Study on the Tool Failure Detection in the Machining by Face Milling (정면밀링 가공시 발생하는 공구파손 검출에 관한 실험적 연구)

  • Seo, Jae-Hyung;Kim, Seong-Il;Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.92-100
    • /
    • 1995
  • This experimental study is mainly investigated on the mean cutting forces and AE(acoustic emission) parameters in order to detect and estimate the tool failure in the pachinig of SUS304 by face milling Mean cutting forces and AE parameters can detect the tool failure in face milling. Effective detection parameters are AE RMS, AE energy, AE count, AE duration, and z-direction mean cutting force. From the analysis of cutting tool failure detection, the tool failure of face milling is caused by sudden increasing of the cutting force.

  • PDF

An Analysis of Cutting Force in Micromachining (미소절삭에서의 절삭력 해석)

  • Kim, Dong Sik;Kahng, C.H.;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.72-80
    • /
    • 1995
  • Ultraprecision machining technology has been playing a rapidly increasing and important role in manufacturing. However, the physics of the micromachining process at very small depth of cut, which is typically 1 .mu. m or less is not well understool. Shear along the shear plane and friction at the rake face dominate in conventional machining range. But sliding along the flank face of the tool due to the elastic recovery of the workpiece material and the effects of plowing due to the large effective negative rake angle resultant from the tool edge radius may become important in micromachining range. This paper suggests an orthogonal cutting model considering the cutting edge radius and then quantifies the effect of plowing due to the large effective negative rake angle.

  • PDF