• Title/Summary/Keyword: Cut-Slope failure

Search Result 115, Processing Time 0.025 seconds

A Case Study on Investigation Stability of Cut Slope in Road (국도와 인접한 절토부 사면안전성 대책에 관한 연구)

  • 이승호;임재승;정태영;신희순;이은동
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.45-52
    • /
    • 2003
  • Construction and extension of road by industrialization are increasing. According to this, construction of large cutting slope is increasing. Therefore, many methods for slope stability by this are applied. Failure happens according to dip and dip direction of slope. It is actuality that is connoting unstable element. This slope include coaly shale. Stability of slope failure this study takes place by road extension running examination for stability property calculate. Use this and examined stability about stereographic projection and wedge failure. Apply suitable reinforcement countermeasure about unstable cutting slope and analyzed stability. Wish to consider effective and robust processing plan of great principle earth and sand side securing stability. Hereafter with these data, is going to utilize in reinforcement and failure prevention.

  • PDF

Study on Suggestion a Standard Installation for Damage Reduction alarm System using Cut-Slope Data (국내 도로절개면 현황 및 붕괴 분석을 통한 경보시스템 설치 기준에 관한 기초적 연구)

  • Bae, Gyu-Jin;Koo, Ho-Bon;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.53-61
    • /
    • 2002
  • Cut-slope due to the road construction is one of the most significant problems in the domestic case, that is, 70% of the land is covered by mountain. Moreover, typhoons or heavy rains concentrated in summer season causes the failure of cut-slope. Rock-fall and soil slope failure take 40.8% and 29.5% out of the entire domestic cut-slope failure, respectively. Rock-fall is quickly occurred by the free fall or rolling of rock fragments generally in the upper slope. Soil slope failure produces a clastics-flow and increases casualty especially when caused by heave rainfall because the velocity of the movement is verb high. Considering the car speed and rock-fall velocity, it will take a life in a moment. This study analyzes a set of field data of most recently collapsed domestic road cut-slopes to characterize these cut-slopes and the nature of rock-falls and clastics flows at each site. Based on the results, design criteria for a road alarm system are proposed, considering the relationship between the time required for clastics-flow and the velocity and braking distance of a cat at the incidence. The road alarm system proposed herein would operate instantly after a rock-fall and it will minimize damages, by warning drivels approaching to the collapse or collapsing location in advance.

Comparison Analysis of Factor of Safety on Rock Slope in Boeun Region Using Limit Equilibrium Method and Distinct Element Method (한계평형법과 개별요소법을 이용한 보은지역 암반사면 안전율 비교해석)

  • 이지수;유광호;박혁진;민경덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.643-650
    • /
    • 2002
  • The large planar failure has occurred in a rock cut slope of highway construction site in Boeun. This area is considered as unstable since the discontinuities whose orientations are similar to the orientation of the failure plane, are observed in many areas. Therefore, several analysis techniques such as SMR, stereographic analysis, limit equilibrium, numerical analysis, which are commonly used in rock slope stability analysis, are adopted in this area. In order to analyze the stress redistribution and nonlinear displacement caused by cut, which are not obtained in limit equilibrium method, the UDEC and shear strength reduction technique were used in this study Then the factors of safety evaluated by shear strength reduction technique and limit equilibrium were compared. In addition, the factor of safety under fully saturated slope condition was calculated and subsequently, the effect of the reinforcement was evaluated.

  • PDF

Analysis of the Forest Road Cut-slope Erosion Control and Rehabilitation Techniques using Gabion Systems with Vegetation Base Materials (임도비탈면에 시공한 식생기반재돌망태의 침식방지 및 녹화효과 분석)

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • Analysis of new approaches to achieve naturally good ecological potential of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials to prevent slope failure and erosion, in the area with highly erodible soil. Existing gabion systems can be divided into monolithic and modular system and can be divided into ten subtypes according to the purpose of establishment and combination of other measures. As a result on the monitoring of erosion amount from forest road cut-slopes in the test applications, the order of erosion amount from largest to smallest is as follows: the curved road cut-slope site where normal gabion system was established 5,840 $cm^3$; the control site 5,833 $cm^3$; the straight road cut-slope site where normal gabion system was established 5,621 $cm^3$; the curved road cut-slope site where the new gabion system was established 4,298 $cm^3$; and the straight road cut-slope site where the new gabion system 4,117 $cm^3$. Therefore, the result shows that the new gabion system is more effective than the normal gabion system to reduce erosion amount from forest road cut-slopes. During the study period, vegetation coverages of the straight and curved road cut-slope site where the new gabion system was established were about 56(30~85)% and about 45(28~65)%, so average vegetation coverage of the sites where the new gabion systems was established was higher than the sites where the normal gabion systems was established. Therefore, it was concluded that the new gabion system can be more effective for cut-slope revegetation.

Effect of Extreme Rainfall on Cut Slope Stability: Case Study in Yen Bai City, Viet Nam

  • Tran, The Viet;Trinh, Minh Thu;Lee, Giha;Oh, Sewook;Nguyen, Thi Hai Van
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.23-32
    • /
    • 2015
  • This paper addresses the effects of extreme rainfall on the stability of cut slopes in Yen Bai city, Northern Viet Nam. In this area, natural slopes are excavated to create places for infrastructures and buildings. Cut slopes are usually made without proper site investigations; the design is mostly based on experience. In recent years, many slope failures have occurred along these cuts especially in rainy seasons, resulting in properties damaged and loss of lives. To explain the reason that slope failure often happens during rainy seasons, this research analyzed the influence of extreme rainfalls, initial ground conditions, and soil permeability on the changes of pore water pressure within the typical slope, thereafter determining the impact of these changes on the slope stability factor of safety. The extreme rainfalls were selected based on all of the rainfalls triggering landslide events that have occurred over the period from 1960 to 2009. The factor of safety (FS) was calculated using Bishop's simplified method. The results show that when the maximum infiltration capacity of the slope top soil is less than the rainfall intensity, slope failures may occur 14 hours after the rain starts. And when this happens, the rainfall duration is the deciding factor that affects the slope FS values. In short, cut slopes in Yen Bai may be stable in normal conditions after the excavation, but under the influence of tropical rain storms, their stability is always questionable.

3D Stereoscopic Terrain Extraction of Road Cut Failure Slope Using Unmanned Helicopter Photography System (무인 헬리콥터 사진촬영시스템을 이용한 도로 절개지 붕괴사면 3차원 입체 지형 추출)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.485-491
    • /
    • 2010
  • Acquisition of information on failure slope, which may cause apprehension of second hand damage, requires acquisition of fast and accurate topographical data and efficient expression in indirect surveying method without accessing as needed. Therefore, in this study, the images on the intended area were photographed through hovering in the air by approaching collapsed road cut slope with the use of unmanned helicopter photography system. As a result of comparing the points observed by no prism total station and the 10 coordinate points analyzed through image analysis, the averages of absolute values were shown to be 0.056m in X axis direction, 0.082m in Y axis direction and 0.066m Z axis direction. In addition, the RMSE of the error for 10 points of test points were 0.015636m in X axis direction, 0.021319m in Y axis direction and 0.018734m in Z axis direction. Therefore, this method can determine the range of slope and longitudinal and cross sections of each slope in dangerous area that cannot be approached in relational image matching method for the terrains of such collapsed cut slope.

A Study on the Status Analysis of Cut Slope in Gyeongnam Region (경남지역 절취사면의 현황분석에 관한 연구)

  • Park, Jin-Kyu;Park, Choon-Sik;Jang, Jeong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.862-869
    • /
    • 2005
  • This study examined 233 cut slopes in Gyeongnam region; evaluated hazards and slope conditions involved in the slope; and determined the priority order for reinforcement. The conclusions are summarized in the following. (1) The slopes that need reinforcement or maintenance are 153, accounting for 65.6% of the entire slopes. Slopes with a length of $0{\sim}200m$ account for 70.9%; slopes with a height of $10{\sim}20m$ account for over 50%. (2) Slopes with slope of more than 1:0.5 account for 70.9% of the entire slopes. The steepness of the slope is owing to more rock slopes than soil slopes. (3) The percentages of rock slopes, soil slopes, complex slopes mixed with rocks and soil, and slopes comprised of igneous rocks are 54.4%, 24.9%, 20.7%, and 54.1%, respectively. (4) In the rock area occurred cave-in, plain failure, wedge failure, and overturning failure, in order. Slopes with volcanic rocks are the most unstable, while sedimentary rocks and metamorphic rocks are relatively stable. (5) When the slope height is over 20m, low grade slopes are more than 80%; leading to the conclusion that the higher the slope height is, the more unstable the slope is.

  • PDF

A Failure of disturbed natural-slope ground caused by cutting slope (절토에 의한 상부자연지반의 붕괴 특성 연구)

  • Nah, Kwang-Hee;Chang, Buhm-Soo;Shin, Chang-Gun;Kim, Yong-Soo;Choi, Yong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.629-634
    • /
    • 2004
  • When it was a localized torrential downpour last year, a natural-slope fell down above a cut-slope. They were caused that stress was opened by cutting slope, ground water level rose quickly and a ground mass strength fell etc. So volume of ground mass increase because of that reasons, finally the disturbed ground was collapse. Therefore I suggest that safety of a natural-slope is a consideration, when a cut-slope is made by cutting ground.

  • PDF

Case Study of the Stability of a Large Cut-Slope at a Tunnel Portal (터널 입구부 대절토 사면 안정성 사례 연구)

  • Park, Dong Soon;Bae, Jong-Soem
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.115-129
    • /
    • 2015
  • The cut-slope of a large-sectional tunnel portal is recognized as a potential area of weakness due to unstable stress distribution and possible permanent displacement. This paper presents a case study of a slope failure and remediation for a large-scale cut-slope at a tunnel portal. Extensive rock-slope brittle failure occurred along discontinuities in the rock mass after 46 mm of rainfall, which caused instability of the upper part of the cut-slope. Based on a geological survey and face mapping, the reason for failure is believed to be the presence of thin clay fill in discontinuities in the weathered rock mass and consequent saturationinduced joint weakening. The granite-gneiss rock mass has a high content of alkali-feldspar, indicating a vulnerability to weathering. Immediately before the slope failure, a sharp increase in displacement rate was indicated by settlement-time histories, and this observation can contribute to the safety management criteria for slope stability. In this case study, emergency remediation was performed to prevent further hazard and to facilitate reconstruction, and counterweight fill and concrete filling of voids were successfully applied. For ultimate remediation, the grid anchor-blocks were used for slope stabilization, and additional rock bolts and grouting were applied inside the tunnel. Limit-equilibrium slope stability analysis and analyses of strereographic projections confirmed the instability of the original slope and the effectiveness of reinforcing methods. After the application of reinforcing measures, instrumental monitoring indicated that the slope and the tunnel remained stable. This case study is expected to serve as a valuable reference for similar engineering cases of large-sectional slope stability.

A Case Study of the Rock-fall Signal Lamp System for Preventing the Damage at the Cut-Slopes (사면붕괴 피해 예방을 위한 낙석신호등 설치 사례 연구)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Rhee, Jong-Hyun;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.253-261
    • /
    • 2007
  • The failure of the road cut-slope due to heavy rains brings about lots of injuries and damage on national properties. KICT has developed CSMS system by means of prevention to manage the dangerous cut slopes. In spite of the continuous management the frequency of cut-slopes failure is increasing the past due to changes of earth-environment. KICT has installed the "Real-Time Monitoring System" on dangerous slopes. The operation of Real-Time Monitoring System is used as a positive system to reduce injuries and damages. However, Although the slope manager is aware of the signs collapsed in advance, it has temporal and spatial limits until the slope manager performs the works which are preventing the accidents. When real time monitoring system finds out an indication of slope collapse, the Rock-fall Signal Lamp System makes road-users indicated the risk of cut slopes. It is a kind of prevention system that it will minimize the damages of the properties as suspension of traffic automatically or passively.