• Title/Summary/Keyword: Customer maintenance failure

Search Result 15, Processing Time 0.019 seconds

Deciding the Maintenance Priority of Power Distribution System using Time-varying Failure Rate (시변 고장률을 이용한 배전계통 유지보수 우선순위 결정)

  • Lee, Hee-Tae;Moon, Jong-Fil;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.476-484
    • /
    • 2006
  • The failure prediction and preventive maintenance for the equipment of nuclear power plant area using reliability-centered maintenance have been grown. On the other hand, the maintenance for power distribution system consists of time-based maintenance mainly. In this paper, the new maintenance algorithms for power distribution system are developed considering reliability indices. First of all, Time-varying failure rates are extracted from data accumulated at KEPCO using exponential distribution function and weibull distribution function. Next, based on the extracted failure rate, reliability for real power distribution system is evaluated for applying the effective maintenance algorithm which is the analytic method deciding the maintenance point of time and searching the feeder affecting the specific customer. Also the algorithm deciding the maintenance priority order are presented based on sensitivity analysis and equipment investment plan are analyzed through the presented algorithm at real power distribution system.

Replacement model under warranty with age-dependent minimal repair

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.18 no.1
    • /
    • pp.9-20
    • /
    • 2017
  • In this paper, we consider a renewable repair-replacement warranty strategy with age-dependent minimal repair service and propose an optimal maintenance model during post-warranty period. Such model implements the repair time limit under warranty and follows with a certain form of system maintenance strategy when the warranty expires. The expected cost rate is investigated per unit time during the life period of the system as for the standard for optimality. Based on the cost design defined for each failure of the system, the expected cost rate is derived during the life period of the system, considering that a renewable minimal repair-replacement warranty strategy with the repair time limit is provided to the customer under warranty. When the warranty is finished, the maintenance of the system is the customer's responsibility. The life period of the system is defined and the expected cost rate is developed from the viewpoint of the customer's perspective. We obtain the optimal maintenance strategy during the maintenance period by minimizing such a cost rate after a warranty expires. Numerical examples using field data are shown to exemplify the application of the methodologies proposed in this paper.

  • PDF

Cost Analysis Model with Minimal Repair of Spare Unit Repair Policy under Periodic Maintenance Policy (정기보전 제도에서 응급수리를 고려한 대체품 수리정책에서의 비용분석 모델)

  • Kim Jae-Joong
    • Journal of Applied Reliability
    • /
    • v.6 no.2
    • /
    • pp.151-161
    • /
    • 2006
  • This article is concerned with cost analysis model in periodic maintenance policy. The repair policy is differently applied according as unit importance during an item being used and unit restoration during an item being failed. So in this paper the repair policy with minimal repair is considered as follow : as the occurrence of failure between minimal repair and periodic interval time, unit is replaced by a spare unit until the periodic maintenance time arrived. Then total expected cost per unit time is calculated according to scale parameter of failure distribution in a view of customer's. The total expected costs are included repair and usage cost : operating, fixed, minimal repair, periodic maintenance and spare unit cost. Numerical example is shown in which failure time of item has Erlang distribution.

  • PDF

Making Decision of the Maintenance Priority of Power Distribution System using Time Varying Failure Rate and Interruption Cost

  • Chu, Cheol-Min;Kim, Jae-Chul;Yun, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The purpose of the this paper is to make decision of the maintenance priority of power distribution system using Time-Varying Failure Rate(TVFR) with interruption cost. This paper emphasizes the practical use of the reliability indices and interruption cost. To make a decision of maintenance priority on power distribution system equipment, the quantification of the reliability level should be represented as a cost. In this paper, the TVFR of power distribution system equipment applied in this paper utilizes analytic method to use the historical data of KEPCO. From this result, the sensitivity analysis on TVFR of equipment was done for the priority, which represents that high priority of the equipment has more effect on system reliability, such as SAIDI or SAIFI, than other equipment. By this priority, the investment plan is established. In this result, customer interruption cost(CIC) could be extracted, and CIC is used as weighting factor to consider a importance of customer. After that, the result calculated the proposal method in this paper is compared with other priority method, such as lifetime, failure rate or only sensitivity.

Cost Analysis Model with Minimal Repair of New Unit Repair Policy under Periodic Maintenance Policy (정기보전 제도에서 응급수리를 고려한 신제품 수리정책에서의 비용분석 모델)

  • Kim, Jae-Joong
    • Journal of Applied Reliability
    • /
    • v.6 no.3
    • /
    • pp.195-203
    • /
    • 2006
  • This paper deals with cost analysis model in periodic maintenance policy. The repair policy with minimal repair is considered as follow : as the occurrence of failure between minimal repair and periodic interval time, unit is replaced by a new unit before the periodic maintenance time comes. Then total expected cost per unit time is calculated according to time delta t in a view of customer's. The total expected costs are included repair and usage cost : operating, fixed, minimal repair, periodic maintenance and new unit expected cost. Numerical example is shown in which failure time of item has Normal distribution.

  • PDF

Optimal inspection frequency to mitigate the risk of building system failure

  • Au-Yong, Cheong Peng;Ali, Azlan Shah;Ahmad, Faizah;Chua, Shirley Jin Lin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.347-352
    • /
    • 2017
  • The poor maintenance practice increases the possibility of system failure. Subsequently, the consequences of failure fall on the aspects of output, safety and healthy, environmental integrity, system quality, and customer satisfaction. Conditionbased maintenance is seen as a potential strategy to improve performance. Whereby, the key success factor of this maintenance strategy is identified as the system inspection. This study aims to investigate the association between system breakdown rate and frequency of inspection. A mixed method approach is implemented by distributing questionnaire and interviewing for data collection. Subsequently, descriptive analysis, correlation analysis and regression are adopted to analyse the collected data from 100 respondents and the results are validated with interview data of 10 interviewees. The research result establishes significant relationship between the system breakdown rate and the frequency of inspection. Additionally, the result of regression analysis confirms that the frequency of inspection is the significant predictor of system breakdown rate. Planning of accurate inspection frequency is crucial to secure the system performance. Hence, the research signifies the importance to carry out regular inspection towards the building systems and components. As a recommendation, the maintenance personnel should assess the risk criticality of the building systems. Then, continuously monitor the condition of critical building systems; regularly inspect the condition of non-critical building systems and randomly inspect all of them.

Reliability-Centered Maintenance Model for Maintenance of Electric Power Distribution System Equipment (배전계통 기기 유지보수를 위한 RCM 모델)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.410-415
    • /
    • 2009
  • With the implementation of electric power industry reform, the utilities are looking for effective ways to improve the economic efficiency. One area in particular, the equipment maintenance, is being scrutinized for reducing costs while keeping a reasonable level of the reliability in the overall system. Here the conventional RCM requires the tradeoff between the upfront maintenance costs and the potential costs of losing loads. In this paper we describe the issues related to applying so-called the "Reliability-centered Maintenance" (RCM) method in managing electric power distribution equipment. The RCM method is especially useful as it explicitly incorporates the cost-tradeoff of interest, i.e. the upfront maintenance costs and the potential interruption costs, in determining which equipment to be maintained and how often. In comparison, the "Time-based Maintenance" (TBM) method, the traditional method widely used, only takes the lifetime of equipment into consideration. In this paper, the modified Markov model for maintenance is developed. First, the existing Markov model for maintenance is explained and analyzed about transformer and circuit breaker, so on. Second, developed model is introduced and described. This model has two different points compared with existing model: TVFR and nonlinear customer interruption cost (CIC). That is, normal stage at the middle of bathtub curve has not CFR but the gradual increasing failure rate and the unit cost of CIC is increasing as the interruption time is increasing. The results of case studies represent the optimal maintenance interval to maintain the equipment with minimum costs. A numerical example is presented for illustration purposes.

Optimization of Improvement Level for Second-Hand Product with Periodic Maintenance Schedule (주기적인 유지보수 계획에 따른 중고제품에 대한 최적 향상수준)

  • Kim, Dae-Kyung;Kim, Jin Woo;Park, Dong Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.151-162
    • /
    • 2013
  • Due to a growing demand for the second-hand product, especially for the expensive one, the warranty and maintenance policies for such products have been studied to improve the product reliability of late. In this paper we study a periodic maintenance model for the second-hand product which is purchased by the customer at the age of $x$. When purchased, the dealer provides a warranty of a fixed length during which the product is maintained periodically to reduce the failure rate of the product and thus, to improve the reliability after each maintenance is served. If a failure occurs between two successive maintenances, only minimal repair is conducted. As for the warranty policy, we adopt free non-renewing repair action on each failure, in addition to the periodic maintenance service during the warranty period. Thus, under the given warranty policy, all the maintenance and repair costs incurred during the warranty period are charged to the dealer. For the proposed periodic maintenance scheme, we formulate a cost model to evaluate the expected total cost charged to the dealer during the warranty period and derive an optimal upgrade level of the failure rate at each maintenance to minimize the expected total warranty cost from the perspective of the dealer. We also present numerical results for an optimal upgrade level based on the proposed methods.

Analysis of Marginal Count Failure Data by using Covariates

  • Karim, Md.Rezaul;Suzuki, Kazuyuki
    • International Journal of Reliability and Applications
    • /
    • v.4 no.2
    • /
    • pp.79-95
    • /
    • 2003
  • Manufacturers collect and analyze field reliability data to enhance the quality and reliability of their products and to improve customer satisfaction. To reduce the data collecting and maintenance costs, the amount of data maintained for evaluating product quality and reliability should be minimized. With this in mind, some industrial companies assemble warranty databases by gathering data from different sources for a particular time period. This “marginal count failure data” does not provide (i) the number of failures by when the product entered service, (ii) the number of failures by product age, or (iii) information about the effects of the operating season or environment. This article describes a method for estimating age-based claim rates from marginal count failure data. It uses covariates to identify variations in claims relative to variables such as manufacturing characteristics, time of manufacture, operating season or environment. A Poisson model is presented, and the method is illustrated using warranty claims data for two electrical products.

  • PDF

The Study on the Relationship between Perceived Service Employee Support and Customer Silence in Failure Situation (서비스 실패상황에서 서비스종업원지원인식과 고객침묵의 관계에 관한 연구)

  • Kim, Sang Hee
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.256-265
    • /
    • 2020
  • This study examines the effects of perceived service employee support on customer's negative silence, defensive silence and acquiescent silence, and the effects of such negative silence on relationship retention intention. Through this, we would like to discuss the negative effects of customer's negative silence and suggest strategies to reduce negative silence. This study employed questionnaire survey. The total number of questionnaires used in the final analysis was 220. A structural equation model was used for hypothesis analysis. As a result, the perceived service employee support has a significant negative effect on the defensive silence and acquiescent silence in the failure situation. In addition, acquiescent silence had a significant negative effect on relationship retention intentions and defensive silence had no significant effect on relationship retention intentions. Acquiescent silence had a higher negative effect on relationship maintenance intention than defensive silence, indicating that acquiescent silence was worse than defensive silence.