• Title/Summary/Keyword: Customer Voltage

Search Result 150, Processing Time 0.025 seconds

The Measurement & Analysis of Voltage Unbalance Factor at LV Customer of Three-Phase Four-Wire System (3상 4선식 저압 수용가의 전압 불평형률 측정 분석)

  • Kim, Jong-Gyeoum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-99
    • /
    • 2004
  • Most of LV customer have applied the 3-phase four wire system distribution system because it has advantage of supplying both of 1-phase at 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But once in a while uneven load unbalance or unclean power quality lead some problems such as do-rating or power losses. In this paper, voltage and current waveform in the actual fields have been measured and analyzed in relation with intermationally allowable voltage unbalance limits.

Analysis on Momentary Voltage Dips with the Interconnection Operation of Utility-interactive Cogneration Systems Considering Their Generator Type (발전기 형태를 고려한 열병합발전시스템의 배전계통 연계운전시의 순시전압변동 해석)

  • 최준호;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • Cogeneration systems are seen as a significant innovation for dispersed energy generation since they are both environmentally friendly and has comparatively high degrees of efficiency. It is especially suited for the decentralized provision of electricity and heat. However, it causes operational problems such as voltage regulation, voltage variation, protection and safety. Especially, it is expected that the interconnection/disconnection operation of cogeneration system has an effect on distribution voltage regulation and variation. Recently, with the increased use of customer-owned computers and other sensitive electronic equipment, electric power quality has become an important concerns. Therefore, the voltage quality problems with cogeneration system should be investigated because the voltage quality is an important part of electrical power quality. In this paper, the momentary voltage dips associated with the interconnection/disconnection operation of cogeneration system are analyzed, including restraint solutions at the customer level. In addition, the unit capacity of cogeneration systems per feeder are evaluated from the view point of momentary voltage variations. The results of this paper are useful analysis data for interconnection standards/guidelines of cogeneration systems and dispersed generation (DG)

  • PDF

A Study on the Customer Voltage Characteristic Based on the Test Devices for PV Systems (태양광전원 계통연계 시험장치에 의한 수용가전압 특성에 관한 연구)

  • Park, Hyeon-Seok;Son, Joon-Ho;Ji, Seong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4529-4536
    • /
    • 2010
  • This paper develops an interconnection test devices for photovoltaic(PV) systems composed of distribution system simulator, PV systems simulator and control and monitoring systems using the LabVIEW S/W, and simulates the customer voltage characteristics considering the 3 parameters on the introduction capacity for PV systems, system configuration and load factor. This paper also proposes a new calculation algorithm for voltage profile to make a comparison between calculation values and test device values. The results show that the test results for the normal operation characteristics of PV systems is very practical and effective.

A Study on Financial Loss Assessment of Voltage Sags (순간전압강하 경제적 손실 평가 연구)

  • Park, Jomg-Il;Song, Young-Won;Park, Chang-Hyun;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.324-325
    • /
    • 2011
  • This paper addresses the assessment of voltage sag costs based on the stochastic prediction of voltage sags. When voltage sags below a certain voltage threshold occur at sensitive industrial process, the industrial customer will experience financial damage. In order to mitigate voltage sag costs and devise efficient solutions to mitigate damage, a study on the financial loss assessment of voltage sags is basically needed. In order to assess the voltage sag costs, the expected sag frequency at a sensitive load point should be calculated by using the concept of the area of vulnerability and historical fault statistics. Then, financial loss due to voltage sags can be obtained by multiplying the expected sag frequency by the cost per sag event.

  • PDF

Voltage Quality Analysis of Low Voltage Customer Connected to the Wind Generation System (풍력발전시스템에 연계된 저압수용가의 전압품질 분석)

  • Kim Moon Chan;Kim Hyun Jong;Kim Tae Ik;Yang Ik Jun;Na Kyoung Yun;Kim Se Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.233-235
    • /
    • 2004
  • Operation of wind turbines has impacts on the voltage quantity at the connected electricity network. Increasing penetration of wind energy makes necessary to study the power quality regarding voltage variations(sag, swell, interruption) and presence of harmonics in the id. This paper investigates the voltage quality of low voltage customers connected to wind generation system. To study the influences of wind power generation to low voltage power system, voltage data are collected in three house using PQM(Power Quality Monitoring) equipment during one month and analyzed regarding voltage variation and harmonics

  • PDF

Analysis for Operation Characteristics of Induction Motor at Asymmetric Voltage Unbalance (비대칭 전압 불평형에 의한 유도전동기의 동작특성 해석)

  • Kim Jong-Gyeum;Park Young-Jin;Lee Eun-Woong;Kim Il-Jung;Sohn Hong-Kwan;Jeong Jong-Ho;Lee Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.791-793
    • /
    • 2004
  • Voltage unbalance is generated by the load and impedance mismatching at the 3-phase 4-wire system of customer load. Voltage unbalance factor can be changed by the voltage amplitude or phase angle, and both. A small voltage unbalance is connected to high current unbalance. If the voltage unbalance is generated at the joint system of 1-phase and 3-phase load, Induction motor due to the current unbalance increase is generated loss, noise and torque ripple. In order to analyze the effect by voltage unbalance, it is necessary to the consideration of amplitude and phase angle. In this paper, We analyzed the effects that induction motor is affected by asymmetric voltage unbalance

  • PDF

The Phenomena Giving Rise of Nonlinear Load Operated by Unbalance Voltage (불평형 전압으로 운전시 비선형 부하에 나타나는 현상)

  • Kim, Jong-Gyeom;Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.285-291
    • /
    • 2002
  • In general, utility voltage is maintained at a relatively low level of Phase unbalance since a low level of unbalance can cause a significant power supply ripple and heating effects on the power system equipment. Voltage unbalance more commonly emerges in individual customer loads due to phase load unbalanced, especially where single phase power loads are used. Under unbalanced input voltages large lower order harmonics appears at the input and output ports of Power conversion devices. As the application of adjustable -speed drives (ASDs) and their integration with complex industrial processes increase, so does the need to understand how ASDs perform during voltage This paper describes a real load test to investigate the performance of 3-HP adjustable speed drives by an unbalanced voltage at the low-voltage system.

Customer Classification Method Using Customer Attribute Information to Generate the Virtual Load Profile of non-Automatic Meter Reading Customer (미검침 고객의 가상 부하패턴 생성을 위한 고객 속성 정보를 이용한 고객 분류 기법)

  • Kim, Young-Il;Ko, Jong-Min;Song, Jae-Ju;Choi, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1712-1717
    • /
    • 2010
  • To analyze the load of distribution line, real LPs (Load Profile) of AMR (Automatic Meter Reading) customers and VLPs (Virtual Load Profile) of non-AMR customers are required. Accuracy of VLP is an important factor to improve the analysis performance. There are 2 kinds of methods to generate the VLP; one is using ALP (Average Load Profile) per each industrial code and PNN (Probability neural networks) algorithm; the other is using LSI (Load Shape Index) and C5.0 algorithm. In this paper, existing researches are studied, and new method is suggested. Each methods are compared the performance with same LP data of real high voltage customers.

Present Situation and Prospects for the Solid State Meter Considering Electricity Tariff Policy (전자식전력량계의 도입현황과 요금구조의 장기방향을 고려한 발전전망)

  • Kwon, O-Hyung;Kim, Jae-Sung;Jo, Jin-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.760-762
    • /
    • 1998
  • Due to the reinforcement of government's DSM(Demand Side Management) policy. Solid State Meter was introduced in Korea since 1993 and it is applied to the high voltage customer exceeding 100kW in order to equalize daily load curve. In recent days, KEPCO has a Plan to use the Solid State Meter which has a data recording and remote meter-reading function for low voltage customer to introduce the real-time pricing system and reduce peak power in the near future. So, this paper suggests the specification and function of Solid State Meter.

  • PDF

Interface design Between AMR and DAS (AMR과 DAS의 인터페이스 구현)

  • Jung, Jum-Soo;Lee, Heung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.126-133
    • /
    • 2008
  • Computer and communication of based IT technology use to das that remote control, monitoring, measuring automatic gas switch, recloser located far about $20{\sim}30[km]$. For increasing efficiency billing, metering of high voltage customer use to amr system. If between das and amr interface operate when generated fault in high voltage electric equipment of customer part, amr system serve to das quickly in fault information data, correct fault location.