• Title/Summary/Keyword: Customer Order Scheduling

Search Result 54, Processing Time 0.024 seconds

Metaheuristics of the Rail Crane Scheduling Problem (철송 크레인 일정계획 문제에 대한 메타 휴리스틱)

  • Kim, Kwang-Tae;Kim, Kyung-Min
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.281-294
    • /
    • 2011
  • This paper considers the rail crane scheduling problem which is defined as determining the sequence of loading/unloading container on/from a freight train. The objective is to minimize the weighted sum of the range of order completion time and makespan. The range of order completion time implies the difference between the maximum of completion time and minimum of start time of each customer order consisting of jobs. Makespan refers to the time when all the jobs are completed. In a rail freight terminal, logistics firms as a customer wish to reduce the range of their order completion time. To develop a methodology for the crane scheduling, we formulate the problem as a mixed integer program and develop three metaheuristics, namely, genetic algorithm, simulated annealing, and tabu search. To validate the effectiveness of heuristic algorithms, computational experiments are done based on a set of real life data. Results of the experiments show that heuristic algorithms give good solutions for small-size and large-size problems in terms of solution quality and computation time.

ANALYSIS OF QUEUEING MODEL WITH PRIORITY SCHEDULING BY SUPPLEMENTARY VARIABLE METHOD

  • Choi, Doo Il
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.147-154
    • /
    • 2013
  • We analyze queueing model with priority scheduling by supplementary variable method. Customers are classified into two types (type-1 and type-2 ) according to their characteristics. Customers of each type arrive by independent Poisson processes, and all customers regardless of type have same general service time. The service order of each type is determined by the queue length of type-1 buffer. If the queue length of type-1 customer exceeds a threshold L, the service priority is given to the type-1 customer. Otherwise, the service priority is given to type-2 customer. Method of supplementary variable by remaining service time gives us information for queue length of two buffers. That is, we derive the differential difference equations for our queueing system. We obtain joint probability generating function for two queue lengths and the remaining service time. Also, the mean queue length of each buffer is derived.

Optimal scheduling of multiproduct batch processes with various due date (다양한 납기일 형태에 따른 다제품 생산용 회분식 공정의 최적 생산계획)

  • 류준형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.844-847
    • /
    • 1997
  • In this paper, scheduling problem is dealt for the minimization of due date penalty for the customer order. Multiproduct batch processes have been dealt with for their suitability for high value added low volume products. Their scheduling problems take minimization of process operation for objective function, which is not enough to meet the customer satisfaction and the process efficiency simultaneously because of increasing requirement of fast adaptation for rapid changing market condition. So new target function has been suggested by other researches to meet two goals. Penalty function minimization is one of them. To present more precisely production scheduling, we develop new scheduling model with penalty function of earliness and tardiness We can find many real cases that penalty parameters are divergent by the difference between the completion time of operation and due date. That is to say, the penalty parameter values for the product change by the customer demand condition. If the order charges different value for due date, we can solve it with the due date period. The period means the time scope where penalty parameter value is 0. If we make use of the due date period, the optimal sequence of our model is not always same with that of fixed due date point. And if every product have due date period, due date of them are overlapped which needs optimization for the maximum profit and minimum penalty. Due date period extension can be enlarged to makespan minimization if every product has the same abundant due date period and same penalty parameter. We solve this new scheduling model by simulated annealing method. We also develop the program, which can calculate the optimal sequence and display the Gantt chart showing the unit progress and time allocation only with processing data.

  • PDF

Multiobjective Hybrid GA for Constraints-based FMS Scheduling in make-to-order Manufacturing

  • Kim, Kwan-Woo;Mitsuo Gen;Hwang, Rea-Kook;Genji Yamazaki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.187-190
    • /
    • 2003
  • Many manufacturing companies consider the integrated and concurrent scheduling because they need the global optimization technology that could manufacture various products more responsive to customer needs. In this paper, we propose an advanced scheduling model to generate the schedules considering resource constraints and precedence constraints in make-to-order (MTO) manufacturing environments. Precedence of work- in-process(WIP) and resources constraints have recently emerged as one of the main constraints in advanced scheduling problems. The advanced scheduling problems is formulated as a multiobjective mathematical model for generating operation schedules which are obeyed resources constraints, alternative workstations of operations and the precedence constraints of WIP in MTO manufacturing. For effectively solving the advanced scheduling problem, the multi-objective hybrid genetic algorithm (m-hGA) is proposed in this paper. The m-hGA is to minimize the makespan, total flow time of order, and maximum tardiness for each order, simultaneously. The m-hGA approach with local search-based mutation through swap mutation is developed to solve the advanced scheduling problem. Numerical example is tested and presented for advanced scheduling problems with various orders to describe the performance of the proposed m-hGA.

  • PDF

An Algorithm Design and Information System Development for Production Scheduling under Make-to-Order Environments (수주생산환경에서 생산일정계획 알고리듬 설계 및 정보 시스템 구현: 변압기 제조공정의 권선공정 적용사례)

  • Park, Chang-Kwon;Jang, Gil-Sang;Lee, Dong-Hyun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.185-194
    • /
    • 2003
  • This paper deals with a realistic production scheduling under a make-to-order production environment. The practical case is studied on the transformer winding process in the 'H' company. The transformer winding is a process that rolls a coil that is coated with an electric insulation material in order to generate the required voltage using the voltage fluctuation. This process occupies an important position among the production processes in the transformer manufacturing company. And this process is composed of parallel machines with different performances according to the voltage capacity and winding type. In this paper, we propose a practical heuristic algorithm for production scheduling to satisfy the customer’s due date under a make-to-order production environment. Also, we implement the production scheduling system based on the proposed heuristic algorithm. Consequently, the proposed heuristic algorithm and the implemented production scheduling system are currently working in the transformer production factory of the ‘H’ company.

Vehicle Scheduling for Inland Container Transportation (컨테이너 내륙 운송을 위한 차량 일정 계획의 수립)

  • Lee, Hee-Jin;Lee, Jeong-Hun;Moon, Il-Kyeong
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.525-538
    • /
    • 2007
  • The importance of efficient container transportation becomes more significant each year due to the constant growth of the global marketplace, and studies focusing on shipping efficiency are becoming increasingly important. In this paper, we propose an approach for vehicle scheduling that decreases the number of vehicles required for freight commerce by analyzing and scheduling optimal routes. Container transportation can be classified into round and single-trip transportation, and each vehicle can be linked in a specific order based on the vehicle state after completing an order. We develop a mathematical model to determine the required number of vehicles with optimal routing, and a heuristic algorithm to perform vehicle scheduling for many orders in a significantly shorter duration. Finally, we tested some numerical examples and compared the developed model and the heuristic algorithm. We also developed a decision support system that can schedule vehicles based on the heuristic algorithm.

Simulation-based Delivery Date Determination Algorithm (효율적 제조자원의 활용을 고려한 생산일정 및 납기일 결정기법)

  • 박창규
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • Keeping the promised delivery date for a customer order is crucial for a company to promote customer satisfaction and generate further businesses. For this, a company should be able to quote the delivery date that can be achieved with the capacity available on the shop floor. In a dynamic make-to-order manufacturing environment, the problem of determining a delivery date for an incoming order with consideration of resource capacity, workload, and finished-product inventory can hardly be solved by an analytical solution procedure. This paper considers a situation in which a delivery date for a customer order is determined based on a job schedule, and presents the SimTriD algorithm that provides the best scheduling for determining a delivery date of customer order through the job schedule that efficiently utilizes manufacturing resources with consideration of interacting factors such as resource utilization, finished-product inventory, and due date.

  • PDF

Customer Order Scheduling Problem on Parallel Machines with Identical Order Size

  • Yang, Jae-Hwan
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.47-77
    • /
    • 2007
  • This paper considers a scheduling problem where a customer orders multiple products(jobs) from a production facility. The objective is to minimize the sum of the order(batch) completion times. While a machine can process only one job at a time, multiple machines can simultaneously process jobs in a batch. Although each job has a unique processing time, we consider the case where batch processing times are identical. This simplification allows us to develop heuristics with improved performance bounds. This problem was motivated by a real world problem encountered by foreign electronics manufacturers. We first establish the complexity of the problem. For the two parallel machine case, we introduce two simple but intuitive heuristics, and find their worst case relative error bounds. One bound is tight and the other bound goes to 1 as the number of orders goes to infinity. However, neither heuristic is superior for all instances. We extend one of the heuristics to an arbitrary number of parallel machines. For a fixed number of parallel machines, we find a worst case bound which goes to 1 as the number of orders goes to infinity. Then, a tighter bound is found for the three parallel machine case. Finally, the heuristics are empirically evaluated.

The techniques of object-based reservation scheduling (객체에 근거한 예약 스케줄링 기법)

  • 김진봉;백청호
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.2
    • /
    • pp.227-233
    • /
    • 2004
  • Complex scheduling problems are related to planning, scheduling, constraint satisfaction problems, object-oriented concepts, and agent systems. Human preference-driven scheduling technique was to solve complex scheduling problems using constraint satisfaction problems and object-oriented concepts. We have tried to apply human preference-driven scheduling technique to reservation problems. For customer's satisfaction, we have considered customer's preferences in the reservation scheduling. The technique of reservation scheduling proposed in this thesis is based on object-oriented concepts. 1'o consider the over all satisfaction, the events of every object are alloted to the board along its priority. Constraints to reservation scheduling are classified to global and local. The definition of board and information of every event are global constraints and the preferences to object's board slots are local constraints. We have applied look-ahead technology to reservation scheduling in order to minimize backtracking not to fail the allotment of events.

  • PDF

A Simulation Study on Dispatching Rule Using Customer Clustering Method (고객 클러스터링 기법을 활용한 할당규칙의 시뮬레이션 연구)

  • Yang, Kwang-Mo;Park, Jae-Hyun;Kang, Kyong-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • The potential needs as well as visible needs of customer should be considered in order to research and analyze of the customer data. The methods to analyze customer data is classified into customer segmentation, clustering analysis model, forecasting customer response probability model, analysis of the customer break rate model and new customer analysis model by the purpose. In this study, we developed the CW-CLV (Correlation Weight Customer Lifetime Value)method that used AHP(Analytic Hierarchy Process)rule for enhance the reliability of customer data and quantitative analysis of the customer segmentation, based on CLV(Customer Lifetime Value). We suggest to new variables and methodology from determined CW-CLV coefficients, because all of companies respect to the diversified customers classification and complexity of consumers needs. Finally, we unfolded any company's scheduling added new methodology using simulation and leaded conclusion about the new methodology.