Customer retention has been a pressing issue for companies to get and maintain the loyal customers in the competing environment. Lots of researchers make effort to seek the characteristics of the churning customers and the loyal customers using the data mining techniques such as decision tree. However, such existing researches don't consider relationships among customers. Social network analysis has been used to search relationships among social entities such as genetics network, traffic network, organization network and so on. In this study, a customer network is proposed to investigate the differences of network characteristics of churning customers and loyal customers. The customer networks are constructed by analyzing the real purchase data collected from a Korean cosmetic provider. We investigated whether the churning customers and the loyal customers have different degree centralities and densities of the customer networks. In addition, we compared products purchased by the churning customers and those by the loyal customers. Our data analysis results indicate that degree centrality and density of the churning customer network are higher than those of the loyal customer network, and the various products are purchased by churning customers rather than by the loyal customers. We expect that the suggested social network analysis is used to as a complementary analysis methodology with existing statistical analysis and data mining analysis.
본 연구에서는 온라인 자동차보험 고객 이탈 예측에 있어 의사결정나무를 적용하였다. 우리는 본 연구에서 2003년과 2004년 사이에 온라인 자동차 보험을 계약한 고객의 데이터를 이용하여 의사결정나무를 이용해 고객이탈을 예측하였다. 우리는 C5.0 알고리즘에 기반을 둔 의사결정나무의 예측 결과에 대한 비교를 위해 다변량판별분석과 로짓분석을 이용하였다. 분석결과 의사결정나무 알고리즘은 다른 기법보다 예측성과가 매우 뛰어난 것으로 나타났다. 이러한 실증분석 결과는 온라인 자동차 보험에 있어서 마케팅전략 수립에 유용한 가이드라인을 제공해 줄 것이다.
본 연구는 방송 통신 산업에서 기업의 서비스 회복 활동이 고객의 상품 전환율에 미치는 영향을 연구 하는 것이다. 한국의 방송통신시장은 이미 포화상태에 이르렀으며, 서비스 수준이 메이저 회사에 비해 상대적으로 낮은 중소기업들의 고객이동은 점점 증가하는 추세이다. 그리고 일단 한번 이동한 고객은 돌아오지 않는다. 이에 따라, 서비스 기업에게 고객유지는 점점 더 중요해지고 있기 때문에 CRM이 강화되는 추세다. 그러나 대규모 투자와 지속적인 비용이 필요한 CRM은 중소기업에서 운영하기 쉽지 않다. 본 연구에서는 CRM환경이 열악한 기업이 고객의 서비스 실패 상황을 작지만 즉각적인 회복활동이 상품전환에 어떠한 영향을 미치는지를 실 기업데이터를 사례를 통해 검증하고자 하였다. 본 연구에서는, 서비스 실패를 경험한 고객의 이동률이 약 2~5배 (월 평균 전체고객 대상 상품전환율 1.3%)가 높았으며, 적극적인 회복 활동은 상품전환율 감소에 영향을 미친다는 결과를 도출 하였다. 본 연구의 시사점은 고객의 상품전환(Churn) 의사에 따른 서비스 회복활동 보다는 서비스 실패 확인 시 기업의 서비스 회복활동 노력이 상품전환율을 낮추어, 기업의 다양한 서비스 실패 환경에서의 서비스 회복 노력의 중요성을 재차 확인할 수 있었으며, 상품전환(Churn) 의사확인 후 방어활동 비용 대비 상대적으로 저 비용으로 효과를 얻을 수 있다는 결론을 도출 할 수 있었다.
As development of information technologies, customer retention has been an important issue in the competing environment. A lot of researches focus on prediction of the churning customers and seeking their characteristics. However, relationships among customers or products have not been considered in existing researches. In this study, product networks are proposed and analyzed to investigate the differences of network characteristics of products purchased by potential churning customers and those of loyal customers. The product networks are constructed from real product purchase data collected from a Korean department store. We investigated the characteristic differences, such as the degree centrality, degree centralization, and density, of two product networks constructed by potential churning customers and the loyal customers. The results indicate that degree centrality, density and degree centralization of the product network of the loyal customers are higher than those of the potential churning customers. And the promotional products of the department store are resulted to be effective in attracting the loyal customers.
고객관계관리(customer relationship management: 이하 CRM)는 고객에 대한 정보를 수집하고 수집된 정보를 효과적으로 활용하여 신규고객획득, 우수고객 유지, 고객가치 증진, 잠재고객 활성화, 평생 고객화의 순환을 통하여 고객을 적극적으로 관리하고 유지하며 고객의 가치를 극대화시키기 위한 기업 마케팅 전략의 일환이다. 특히 경쟁 환경이 급변하고 치열해 짐에 따라 기업의 수익 극대화를 위한 고객가치 증대 및 고객과의 관계 형성을 위한 CRM활동 중 고객의 이탈방지를 통한 유지관리의 중요성이 점차 커지고 있으며, 이러한 움직임은 고객 세분화를 통한 이탈고객 관리분석으로 주로 금융시장에서 다루어져왔다. 한편, 금융시장뿐만 아니라 모든 사업 분야에서 고객 유지 및 이탈방지를 위한 분석의 필요성은 높아지고 있다. 그 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리하여 고객이탈을 막는 것이 고객관리에서 점차 그 중요성을 더하기 때문이다. 그러나 아직까지 필요성만 대두될 뿐 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 이탈고객에 대한 체계적인 연구가 진행되지 않았다는데 한계점이 있다. 이에 본 연구에서는 TV 홈쇼핑사의 실제 고객자료를 통하여 고객의 유지 및 이탈방지를 위한 CRM전개방안, 이탈고객과 유지고객간의 인구통계적 속성 및 거래 행동의 특성 차이를 분석, 이탈에 미치는 영향력이 높은 변수를 밝혀내고 이탈고객예측 모형을 통하여 개별고객의 이탈확률을 예측하고자 했다. 더 나아가 실증 분석 결과를 바탕으로 이탈예측고객을 대상으로 고객 이탈을 방지하고 거래유지 및 활성화를 위한 CRM전개 방안을 도출, 이를 바탕으로 TV 홈쇼핑사가 수립해야할 마케팅 전략을 제시한다.
This paper develops a model of customer satisfaction in the mobile telecommunication services. We examine the relationships among customers'overall satisfaction and underlying dimensions; perceived service quality, service value, and brand image. Variables related to customer satisfaction and dissatisfaction are derived from customer critical incidence survey. The model is estimated with multi-variate data analysis. Results indicate that the (1) technical service quality is the main driver of customer overall satisfaction, (2) some peripheral services are rapidly evolving into the core services of mobile telecommunications, and (3) the current policy of service providers does not focus on customer satisfaction but on establishing churning barrier by increasing switching costs.
의사결정 나무라고 불리우기도 하는 나무모형은 결과 해석의 용이성으로 데이터마이닝의 분류예측 모형으로서 큰 각광을 받고 있다. 현재 나무모형으로 가장 많이 사용되는 CART(Breiman et al., 1984)나 C4.5(Quinlan, 1993) 모두 생성된 노드들의 자료 구성이 목표변수(target variable)를 기준으로 각 수준 구성비 측면에서 순수해지도록 진행된다. 그러나 CRM(Customer Relationship Management)에 있어 가장 흔한 주제인 해지예측을 위한 모델링을 실시하는 경우 관심의 대상인 해지자가 전체 자료에 극히 일부를 차지하여, 기존의 분할 방법에서와 같이 분할되어 생성되는 모든 노드의 순수성을 동시에 고려하기란 불가능하다 Buja와 Lee(1999)는 목표변수 중 소수의 관심에 대상이 되는 부류를 찾아내기 위한 나무모형 생성방법을 소개하였다. 즉, 해지자 관리가 중요한 경우 해지자와 비해지자 구분을 진행하는 기존의 방법과는 달리 전체 자료 중 해지자를 집중적으로 찾아가는 탐색적 분할 기준인 단측 순수성(one-sided purity)을 제안하였다. 본 연구에서는 단측 순수성에 의한 나무모형을 모 PC통신 회사의 해지자 자료에 적용하여 기존의 방법과 비교하였고 몇 가지 시뮬레이션 자료를 통해 단측 순수성의 문제점과 앞으로 해결하여야 할 과제에 대하여 살펴보았다.
Retention of possible churning customer is one of the most important issues in customer relationship management, so companies try to predict churn customers using their large-scale high-dimensional data. This study focuses on dealing with large data sets by reducing the dimensionality. By using six different dimension reduction methods-Principal Component Analysis (PCA), factor analysis (FA), locally linear embedding (LLE), local tangent space alignment (LTSA), locally preserving projections (LPP), and deep auto-encoder-our experiments apply each dimension reduction method to the training data, build a classification model using the mapped data and then measure the performance using hit rate to compare the dimension reduction methods. In the result, PCA shows good performance despite its simplicity, and the deep auto-encoder gives the best overall performance. These results can be explained by the characteristics of the churn prediction data that is highly correlated and overlapped over the classes. We also proposed a simple out-of-sample extension method for the nonlinear dimension reduction methods, LLE and LTSA, utilizing the characteristic of the data.
국내 이동통신 서비스 시장 사업자들은 신규고객 유치에 집중하기 보다는 기존고객 유지에 더 관심을 가지고 있다. 이러한 배경에는 새로운 신규고객의 창출에 소요되는 비용이 기존고객을 유지하는 비용이 적게 들기 때문이다. 따라서 고객이탈을 발생시키는 요인이 무엇인지를 본 연구에서 알아보고자 한다.
한국윤활학회 2002년도 the technical trends in the world automobile and lubricant market
/
pp.21-24
/
2002
There is a trend with driveline lubricants toward improved thermal stability, vehicle component durability and fuel efficiency. These improvements can significantly reduce vehicle operating costs and improve customer satisfaction. Of these improvements, the fuel efficiency is getting a substantial attention due to recent focus on $CO_2$ emission control in Europe, Japan and $CAF{\'{E}}$ requirement in U.S.A. Lower viscosity axle oils and transmission fluids are currently being evaluated as potential solutions since these lubricants tend to reduce the churning losses and can improve the fuel efficiency. However, these lubricants should provide adequate gear and bearing protection, while increasing the overall efficiency of the driveline components. In this paper, the development of new fuel efficient axle was discussed with the focus on the effect of base oils, additives, and viscosity modifiers on the fuel efficiency of driveline components.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.