• 제목/요약/키워드: Cushion Sleeve

검색결과 11건 처리시간 0.024초

쿠션슬리브의 오리피스가 공압실린더의 쿠션특성에 미치는 영향 (Effect of Orifices in Cushion Sleeve on Cushion Characteristic of Pneumatic Cylinder)

  • 박재범;염만오
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.76-80
    • /
    • 2004
  • Cushion sleeves are used in pneumatic cylinders to avoid impact force arising at the end stroke part between moving piston and cylinder cover. In this study low kinds of cushion sleeves are designed, manufactured and attached to the pneumatic cylinder to be experimented. The effects of cushion sleeves on cushion characteristics are investigated. e results are as follows; the pressure variation of cushion room with orifices are inspected to be smaller than that of cushion room without orifices. So sleeves with orifices are expected as protecting from impact and vibration of pneumatic cylinder. The object of this study is to provide data on the charactristics of pneumatic cushion sleeve in case of being used in industry.

공압 쿠션실린더에서 쿠션슬리브의 오피리스 유.무에 따른 쿠션영 역에서 쿠션특성 (Cushion Characterics at Cushioning Zones of Pneumatic Cushion Cylinder by Orifice Existence of Cushion Sleeve)

  • 박재범;염만오;장성철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.435-439
    • /
    • 2002
  • In the pneumatic system, pneumatic cylinder is wildly used to factory automation. In general, Pneumatic cylinder problems are occured with colliding to stroke end part at which piston collide to end-cap, head cap and tube when piston is loading. This appearances have a short life of cylinder and is due to system destruction. This study examines the dynamic characteristics of pneumatic cushioning cylinder and cushion sleeve design. At head part cushion chamber for the vertical experimental, The decisions of cushioning effect and the results of the experimental research are obtained to the followings: i) The cushioning effects could acqure to the reserch, if the compressible energy is more than kinetic ones. ii) The collision of piston and head cover could acqure to the research, if the kinetic energy is more than compressible iii) If the load increase to the rolling car, the cushion region pressures would increase and the dynamic force.

  • PDF

메타인 및 메타아웃 제어에 의한 공기압 실린더의 쿠션특성에 관한 실험적 연구 (Experimental Study of Cushioning Pneumatic Cylinder with Meter In/Meter Out Control System)

  • 김동수;이상천
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.97-104
    • /
    • 2000
  • Pneumatic cylinder is widely used for mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under high velocity and load. In this research, the pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system with multiple orifice cushion sleeve which is set vertically controled with meter-in/out system. This study examines the dynamic characteristics of pneumatic cylinder with cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in system.

  • PDF

Experimental Study on Cushioning Characteristics of Pneumatic Cylinder with Meter-In/Meter-Out Control

  • Kim, Dong-Soo;Lee, Sang-Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.57-65
    • /
    • 2002
  • Pneumatic cylinder is widely used fur mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates the destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under conditions of high velocity and load. In this research pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system which is set vertically with multiple orifice cushion sleeve is controled with the meter-in/out control system. This study examines the dynamic characteristics of pneumatic cylinder which are used as cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in control system.

공압 쿠션실린더에서 쿠션슬리브의 오리피스 형상에 따른 쿠션영역에서 쿠션특성 (Cushion Characterics at Cushioning Zones of Pneumatic Cushion Cylinder According to the Shape of Cushion Sleeve)

  • 박재범;염만오
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.440-445
    • /
    • 2002
  • 공압쿠션실린더(${\psi}80{\times}500^{st}$)의 쿠션장치인 쿠션슬리브(${\psi}20{\times}28^{st}$) 4종(Model #a, Model #b, Model #c, Model #d) 모델을 제작하여 수직하강하는 실린더에 각각 장착한 후, 각 모델에 따라 압력과 부하 특성을 비교하였다. 동일한 실험조건인 공급압력($5kg_{f}/$\textrm{cm}^2$)과 부하하중($70kg_{f}$)에서 각 모델별 실험을 실행하였다. 각 모델별 실험에서, Model #c의 쿠션슬리브인 경우가 가장 적합한 형상임을 알 수 있었다.

  • PDF

An Experimental Study of Nonlinear Viscoelastic Bushing Model for Axial Mode

  • Lee, Seong-Beom;Shin, Jung-Woog;Alan S. Wineman
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1324-1331
    • /
    • 2003
  • A bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is essentially a hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. The shaft is connected to the suspension and the sleeve is connected to the frame. The cylinder provides the cushion when it deforms due to relative motion between the shaft and sleeve. The relation between the force applied to the shaft or sleeve and its deformation is nonlinear and exhibits features of viscoelasticity. An explicit force-displacement relation has been introduced for multi-body dynamics simulations. The relation is expressed in terms of a force relaxation function and a method of determination by experiments on bushings has been developed. Solutions allow for comparison between the force-displacement behavior by experiments and that predicted by the proposed method. It is shown that the predictions by the proposed force-displacement relation are in very good agreement with the experimental results.

공압 수직실린더의 쿠션특성에 관한 실험적 연구 (An Experimental Study on Cushion Characteristics of pneumatic Cylinder for Vertically-Mounted.)

  • 김동수;김형의;이상천
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.73-87
    • /
    • 1998
  • A pneumatic control system of compressed air as a working fluid has a variety of advantages such as low price, high respondence, non-explosion and good control performance and thus has many applications in the field of automobile, electronic and semiconductor industry. However, it has a difficulty in contolling a precise position due to quick response of system and compressibility of working fluid and. in particular, shock stress may occur due to an external load, resulting in fracture of a cylinder cap unless cushion device is equipped in the linear actuator. To avoid this, a cushion device should be installed for damping effect of the external load and the supply pressure as well as for decreasing shock stress and vibration caused by high speed rotation. Previous studies include dimensionless analyses and computer simulations of cushion capability and experiments of horizontally-mounted cylinder performances. A new attempt is experimentally made in this study using a vertically-mounted cylinder under an operation condition of 4, 5 and 6 (bar) as supply pressure and 40, 70 and 100 (kgf) as external load. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion characteristics was also revealed in the meter-in circuit.

  • PDF

차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드- (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode-)

  • 이성범
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

일래스토메릭 부싱의 회전방향 모두 비선형 점탄성 모델연구 (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Torsional Mode)

  • 이성범
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.194-200
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. For axial motion case, the relation between the force applied to the shaft and their relative displacement was considered. In this paper, the relation between the moment applied to the shaft and their relative deformation(angle of rotation) is considered for the torsional motion case. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the moment relaxation function of the bushing. Solutions also allow for comparison between the exact moment-deformation behavior and that predicted the proposed model. It is shown that the predictions of the proposed moment-deformation relation are in very good agreement with the exact results.

  • PDF

근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가 (Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design)

  • 구본학;이동희;김주용
    • 감성과학
    • /
    • 제26권4호
    • /
    • pp.41-50
    • /
    • 2023
  • 본 연구는 EMG(electromyography) 텍스타일 전극 개발을 목적으로 레이어 수의 디자인 및 원단을 다르게 하여 성능 및 신호 획득 안정성을 평가한다. 레이징 및 프레스 공정을 통하여 텍스타일 전극을 제조하며 Layer-0, Layer-1, Layer-2로 레이어 유무 및 수에 따른 결과를 분석했다. 이에 레이어 유무에 따라서는 근활성 측정에 영향을, 수가 많을수록 높은 성능이 나타남을 확인할 수 있었다. Layer-2 구조로 통일하여 5가지의 원단(네오프렌, 스판덱스 쿠션, 폴리에스테르 100%, 나일론 스판덱스, 광목 캔버스)으로 전극을 제조해 실험해 보았다. 성능적인 면에서, 원단의 중량이 높은 나일론 스판덱스가 높은 성능을 보였으며, 스판쿠션 텍스타일 전극이 근활성도 수득에 높은 안정성을 보였다. 이에 위 연구는 레이어에 따른 성능 연관성과 전극-피부사이의 닿는 면적 간의 관계 등을 고찰하여 슬리브 전체의 의복압을 늘리는 대신 특정 센서 측정 부위에만 높은 압력을 가함으로 차후 연구에서 레이어의 수 및 물성에 따른 전극의 공학적 설계 가능성을 제시한 의의가 있다.