• Title/Summary/Keyword: Curve shape

Search Result 1,084, Processing Time 0.034 seconds

Effect of postulated crack location on the pressure-temperature limit curve of reactor pressure vessel

  • Choi, Shinbeom;Surh, Han-Bum;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1681-1688
    • /
    • 2019
  • In accordance with ASME Boiler and Pressure Vessel (B&PV) Code Sec.XI Appendix. G, a postulated crack is located at the beltline of a reactor pressure vessel because the neutron flux at the beltline is higher than elsewhere. This means that the distance between the core and the semi-spherical bottom head is longer than the distance between the core and the cylindrical beltline. However, several Small and Medium sized Reactors have bottom heads with diverse shapes, including dished or semi-elliptical shapes, to satisfy the requirement and performance. So, the aim of this paper is to evaluate the effect of crack location on Pressure-Temperature limit curve. To do this, two types of postulated crack location, such as beltline and semi-elliptical bottom head, were adopted to derive the Pressure-Temperature limit curve. Also, parametric studies for neutron flux, crack shape and so on were performed. As a result, core critical temperature of semi-elliptical bottom head is found to higher than that of beltline even when they have same values of thickness and neutron flux. This result will be useful to enhance the understanding of Pressure-Temperature limit curve.

A Study on Improving Reliability of Durability Life Estimation for Excavator Fuel Tank Mounting Using Equivalent S-N Curve Method (등가 S-N 선도 모형에서의 굴착기 연료탱크 마운팅부 내구수명 예측 신뢰성 향상 방안 연구)

  • Lee, Sung-Won;Jeong, Jin-Wook;Kim, Seong-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.17-26
    • /
    • 2021
  • It is challenging to estimate the fatigue life of construction equipment consisting of a welded joint using field structure test owing to the uncertainty of the S-N curve. IIW recommends different S-N curves for various welded joint types. However, there is no way to define an appropriate curve considering complex design shape and strain gauge characteristics. This paper proposes an equivalent S-N curve method based on the relationship between IIW effective notch stress and virtual stress using finite element analysis. Moreover, a case study was conducted for the excavator fuel tank. The proposed method is expected to enhance accuracy and consistency in calculating the fatigue life for the welded structure of construction equipment.

A Controllable Ternary Interpolatory Subdivision Scheme

  • Zheng, Hongchan;Ye, Zhenglin;Chen, Zuoping;Zhao, Hongxing
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.29-38
    • /
    • 2005
  • A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. Its support is computed. The $C^0$ and $C^1$ convergence analysis are presented. To elevate its controllability, a modified edition is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be used to control the shape of the corresponding subdivision curve easily and purposefully. The role of the initial shape weight is analyzed theoretically. The application of the presented schemes in designing smooth interpolatory curves and surfaces is discussed. In contrast to most conventional interpolatory subdivision scheme, the presented subdivision schemes have better locality. They can be used to generate $C^0$ or $C^1$ interpolatory subdivision curves or surfaces and control their shapes wholly or locally.

Characteristics of Noise Attenuation with the Variation of Flow Condition and Hole Shape of Perforated Intruding Tues in Muffler (유동조건과 내부관 구명형상의 변화에 따른 소음기의 소음저감 특성)

  • Jung, Jin-Nyon;Kim, Won-Jin;Cho, Bum-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.87-93
    • /
    • 1999
  • To propose a useful modelling method for an actual muffler, the noise attenuation effects of muffler was investigated according to the flow condition and the hole shape of tubes. In this work, the finite element method was used to calculate the transmission loss of muffler, The noise attenuation characteristics of four different types of muffler in the hole shape of tubes were compared mutually to find a more simple equivalent model. Analytical results showed that the overall value of transmission loss increases and the peaks of transmission loss curve shift to the low frequency with mean flow for the given muffler, Also the noise attenuation characteristics of the equivalent model having the split holes is almost the same as those of the actual muffler having many circular holes.

  • PDF

Three-dimensional Shape Recovery from Image Focus Using Polynomial Regression Analysis in Optical Microscopy

  • Lee, Sung-An;Lee, Byung-Geun
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Non-contact three-dimensional (3D) measuring technology is used to identify defects in miniature products, such as optics, polymers, and semiconductors. Hence, this technology has garnered significant attention in computer vision research. In this paper, we focus on shape from focus (SFF), which is an optical passive method for 3D shape recovery. In existing SFF techniques using interpolation, all datasets of the focus volume are approximated using one model. However, these methods cannot demonstrate how a predefined model fits all image points of an object. Moreover, it is not reasonable to explain various shapes of datasets using one model. Furthermore, if noise is present in the dataset, an error will be generated. Therefore, we propose an algorithm based on polynomial regression analysis to address these disadvantages. Our experimental results indicate that the proposed method is more accurate than existing methods.

Spiral Casing of a Volute Centrifugal Pump - Effects of the Cross Sectional Shape - (볼류트 원심펌프의 스파이럴 케이싱 - 단면 형상의 영향 -)

  • Jin, Hyun Bae;Kim, Myung Jin;Son, Chang Ho;Chung, Wui Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.28-34
    • /
    • 2013
  • Centrifugal pump consists of a axis, a impeller and a spiral casing. The impeller is the most important component in centrifugal pump. But to minimize flow loss in discharge passage including spiral casing, the shape of spiral casing is very important also. So, to investigate the effect of shape of the spiral casing on performance curve of pump, the characteristics of spiral casing were studied through numerical analysis for centrifugal pump used on industry field. From the results the rectangular model was showed more loss than the others because of asymmetric flow field.

Dimensional Characteristics of Hydraulic Actuator Curve based on 3D Printing Filament Materials (3D 프린팅 필라멘트 재료에 따른 유압액츄에이터 커브의 치수 특성)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-79
    • /
    • 2021
  • In this paper, the 3D shape of a hydraulic actuator cover was 3D printed by applying two materials, namely PLA and ABS. Subsequently, the printed shape was scanned to analyze the material properties, dimensional change characteristics, dimensions, and scan shape as a real model. To compare and analyze material-specific 3D printing dimensions, a non-contact mobile laser scanner was used to scan a portion of the printed hydraulic actuator cover and the final alignment shape of the 3D printed part was studied on the basis of the design model.

TOPSIS-Based Multi-Objective Shape Optimization for a CRT Funnel (TOPSIS 를 적용한 CRT 후면유리의 다중목적 형상최적설계)

  • Lee, Kwang-Ki;Han, Jeong-Woo;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.729-736
    • /
    • 2011
  • The technique for order preference by similarity to ideal solution (TOPSIS) is regarded as a classical method of multiple attribute decision making (MADM), often used to solve various decision-making or selection problems. It is based on the concept that the chosen alternative should have the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution. The TOPSIS can be applied to a design process for carrying out multi-objective shape optimization wherein the best and worst alternatives are to be decided. In this paper, multi-objective shape optimization using the TOPSIS and Rational Bezier curve was applied to the funnel of a cathode-ray tube (CRT). In order to minimize the weight and first principal stress, a new multi-objective shape optimization methodology is proposed, wherein the relative-closeness coefficients of the TOPSIS are defined as the performance indices of a multi-objective function and evaluated by response surface models. This methodology enables the designer to decide on the best solution from a number of design specification groups by examining the various conflicts between the weight and the first principal stress.

The study on preference according to visual shape of Hangeul logotype (한글 로고타입의 시각적인 형태에 따른 선호도에 관한 연구)

  • Shin, Yoon-Jhin
    • Science of Emotion and Sensibility
    • /
    • v.12 no.2
    • /
    • pp.193-204
    • /
    • 2009
  • The importance of corporate identity design has been recently highlighted in the marketing. However, logotype among marks that represent the image of a company has been neglected relatively comparing to symbol mark and logo mark. A logotype should be something to represent the personalities and characteristics of a company in suggestive ways. For such reasons, the image expressions by shape are thought to be important. Consequently, the formative aspects of visual communication design should be examined with emphases. However, it is true that studies on the formative aspects regarding logotypes and logo marks, especially studies on the shapes of font types and the responses of consumers to them, are lacking. Accordingly, this study examined the visual shape of logotype preferred by consumers and the shape of logotype preferred by consumers according to the business type of companies. As a result of research, there were differences in the elements of logotype preferred according to the business type of companies; as for construction companies is preferred the body of the type of dotum font with bold stem, without serif, with oblique, straight-line and curve-line endings; as for banks is preferred the body of the type of dotum font without serif, with oblique ending and with one-side curve style of serif, the stem in a middle level; as for laboratories is preferred the body of the type of dotum font with oblique ending, with bold stem and straight-line serif. The elements that should be commonly applied to construction companies, banks and laboratories appear to be the oblique ending but the curve-line ending and shallow stem seemed to be avoided. On the other hand, the serif, ending and gulim appeared to be applied differently according to the business type.

  • PDF

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.