References
- Cai, Z. J. (1995), Convergence, error estimation and some properties for four-point interpolation subdivision scheme, Computer Aided Geometric Design, 12(5), 459-468 https://doi.org/10.1016/0167-8396(94)00024-M
- Cai, Z. J. (1995), The theory and application of four-point scheme with non-stationary parameter, Chinese Annals of Mathematics (Ser. A), 16(4), 524-531 (in Chinese)
- Cai, Z. J. (1998) Modified four-point scheme and its application, Computer Aided Geometric Design, 15(2), 251-260 https://doi.org/10.1016/S0167-8396(97)00027-7
- Deslauriers, G. and Dubuc, S., (1989), Symmetric iterative interpolation processes, Constructive Approximation, 5, 49-68 https://doi.org/10.1007/BF01889598
- Dodgson, N.A., Sabin, M.A., Barthe, L., and Hassan, M.F. (2002), Towards a ternary interpolating subdivision scheme for the triangular mesh, Technical Report number 539, University of Cambridge Computer Laboratory
- Dyn, N., Gregory, J.A., and Levin, D. (1990), A butterfly subdivision scheme for surface interpolation with tension control, ACM Transactions on Graphics, 9, 160-169 https://doi.org/10.1145/78956.78958
- Dyn, N., Levin, D., and Gregory, J.A. (1987), A 4-point interpolatory subdivision scheme for curve design, Computer Aided Geometric Design, 4(4), 257-268 https://doi.org/10.1016/0167-8396(87)90001-X
- Hassan, M.F. and Dodgson, N.A. (2002), Ternary and three-point univariate subdivision schemes, Curve and Surface Fitting: Saint-Malo 2002 (Albert Cohen, Jean-Louis Merrien, and Larry L. Schumaker eds.), pp.199-208
- Hassan, M.F., and Dodgson, N.A. (2004), Further analysis of ternary and three-point univariate subdivision schemes, Technical Report number 599, University of Cambridge Computer Laboratory
- Hassan, M.F., Ivrissimitzis, J.P., Dodgson, N.A., and Sabin, M.A. (2002), An interpolating 4-point C2 ternary stationary subdivision scheme, Computer Aided Geometric Design, 19(1), 1-18 https://doi.org/10.1016/S0167-8396(01)00084-X
- Jin, J.R., and Wang, G.Z. (2000), A non-uniform 4-piont interpolatory subdivision scheme to construct curve, Appl. Math. J. Chinese Univ.(Ser. A), 15(1), 97-100 (in Chinese)
- Kobbelt, L. (1996), Interpolatory subdivision on open quadrilateral nets with arbitrary topology, Computer Graphics Forum (proceedings of EUROGRAPHICS 1996), 15(3), 409-420 https://doi.org/10.1111/1467-8659.1530409
- Kuijt, F. and Damme. R. (1998), Convexity-preserving interpolatory subdivision schemes, Constructive Approximation, 14(4), 609-630 https://doi.org/10.1007/s003659900093
- Labisk, U. and Greiner, G. (2000), Interpolatory-subdivision, Compute Graphics Forum (Proceedings of EUROGRAPHICS 2000), 19(3), 131-138 https://doi.org/10.1111/1467-8659.00405
- Takayuki, Itoh. and Kenji, Shimada. (2002), Automatic conversion of triangular meshes into quadrilateral meshes with directionality, International Journal of CAD/CAM, 1(1), 11-21
- Weissman, A. (1990), A 6-point interpolatory subdivision scheme for curve design, Master's thesis, Tel-Aviv University
- Zorin, D., Schroder, P., and Sweldens, W. (1996), Interpolating subdivision for meshes with arbitrary topology, In Computer Graphics Proceedings, ACM SIGGRATH, 189-192 https://doi.org/10.1145/237170.237254