• 제목/요약/키워드: Curvature.

검색결과 3,981건 처리시간 0.027초

ON H2-PROPER TIMELIKE HYPERSURFACES IN LORENTZ 4-SPACE FORMS

  • Firooz Pashaie
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.739-756
    • /
    • 2024
  • The ordinary mean curvature vector field 𝗛 on a submanifold M of a space form is said to be proper if it satisfies equality Δ𝗛 = a𝗛 for a constant real number a. It is proven that every hypersurface of an Riemannian space form with proper mean curvature vector field has constant mean curvature. In this manuscript, we study the Lorentzian hypersurfaces with proper second mean curvature vector field of four dimensional Lorentzian space forms. We show that the scalar curvature of such a hypersurface has to be constant. In addition, as a classification result, we show that each Lorentzian hypersurface of a Lorentzian 4-space form with proper second mean curvature vector field is C-biharmonic, C-1-type or C-null-2-type. Also, we prove that every 𝗛2-proper Lorentzian hypersurface with constant ordinary mean curvature in a Lorentz 4-space form is 1-minimal.

THE CURVATURE OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

  • Jin, Dae Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권4호
    • /
    • pp.327-335
    • /
    • 2012
  • We study half lightlike submanifolds M of semi-Riemannian manifolds $\widetilde{M}$ of quasi-constant curvatures. The main result is a characterization theorem for screen homothetic Einstein half lightlike submanifolds of a Lorentzian manifold of quasi-constant curvature subject to the conditions; (1) the curvature vector field of $\widetilde{M}$ is tangent to M, and (2) the co-screen distribution is a conformal Killing one.

Viscoplastic analysis of thin-walled tubes under cyclic bending

  • Pan, Wen-Fung;Hsu, Chien-Min
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.457-471
    • /
    • 1999
  • In this paper, different curvature-rates are controlled to highlight the characteristic of viscoplastic response in cyclic bending tests. The curvature-ovalization apparatus, which was designed by Pan et al. (1998), is used for conducting the curvature-controlled experiments on thin-walled tubular specimens for AISI 304 stainless steel under cyclic bending. The results reveals that the faster the curvature-rate implies, the fast degree of hardening of the metal tube. However, the ovalization of the tube cross-section increases when the curvature-rate increases.

ZERO SCALAR CURVATURE ON OPEN MANIFOLDS

  • Kim, Seong-Tag
    • 대한수학회논문집
    • /
    • 제13권3호
    • /
    • pp.539-544
    • /
    • 1998
  • Let (M, g) be a noncompact complete Riemannian manifold of dimension n $\geq$ 3 with scalar curvature S, which is close to O. With conditions on a conformal invariant and scalar curvature of (M, g), we show that there exists a conformal metric (equation omitted), near g, whose scalar curvature (equation omitted) = 0 by gluing solutions of the corresponding partial differential equation on each bounded subsets $K_{i}$ with ∪$K_{i}$ = M.

  • PDF

부착특성을 고려한 휨모멘트-곡률 관계에 관한 연구 (Study on the Relationships of Bending Moment-Corvature Based on Bond Property)

  • 장일영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.81-85
    • /
    • 1991
  • The object of this study is to propose the bending moment-curvature relationships based on the bond properties between concrete and steel for noncraking zone, and evaluate the flexural displacement of reinforced concrete members. The bond-slip relationship and the strain hardening effect of steel were taken into account in order to evaluate the spacing of the cracks and the curvature distribution. Calculated curvature distribution along the longitudinal axis was transformed into equivalent curvature distribution. The flexural displacement was calculated by means of double intergral of the equivalent curvature. Calculated values are in good agreement with the experimental data.

  • PDF

Sasakian manifolds with cyclic-parallel ricci tensor

  • Lee, Sung-Baik;Kim, Nam-Gil;Han, Seung-Gook;Ahn, Seong-Soo
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.243-251
    • /
    • 1996
  • In a Sasakian manifold, a C-Bochner curvature tensor is constructed from the Bochner curvature tensor in a Kaehlefian manifold by the fibering of Boothby-wang[2]. Many subjects for vanishing C-Bocher curvature tensor with constant scalar curvature were studied in [3], [6], [7], [9], [10], [11] and so on.

  • PDF

SPACE-LIKE SUBMANIFOLDS WITH CONSTANT SCALAR CURVATURE IN THE DE SITTER SPACES

  • Liu, Ximin
    • 대한수학회지
    • /
    • 제38권1호
    • /
    • pp.135-146
    • /
    • 2001
  • Let M(sup)n be a space-ike submanifold in a de Sitter space M(sub)p(sup)n+p (c) with constant scalar curvature. We firstly extend Cheng-Yau's Technique to higher codimensional cases. Then we study the rigidity problem for M(sup)n with parallel normalized mean curvature vector field.

  • PDF

A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE ADMITS SOME HALF LIGHTLIKE SUBMANIFOLDS

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.1041-1048
    • /
    • 2013
  • In this paper, we study the curvature of a semi-Riemannian manifold $\tilde{M}$ of quasi-constant curvature admits some half lightlike submanifolds M. The main result is two characterization theorems for $\tilde{M}$ admits extended screen homothetic and statical half lightlike submanifolds M such that the curvature vector field of $\tilde{M}$ is tangent to M.

TOTAL SCALAR CURVATURE AND EXISTENCE OF STABLE MINIMAL SURFACES

  • Hwang, Seung-Su
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.677-683
    • /
    • 2008
  • On a compact n-dimensional manifold M, it has been conjectured that a critical point metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of volume 1, should be Einstein. The purpose of the present paper is to prove that a 3-dimensional manifold (M,g) is isometric to a standard sphere if ker $s^*_g{{\neq}}0$ and there is a lower Ricci curvature bound. We also study the structure of a compact oriented stable minimal surface in M.