• Title/Summary/Keyword: Curvature Theory

Search Result 200, Processing Time 0.028 seconds

Multimodal Curvature Discrimination of 3D Objects

  • Kim, Kwang-Taek;Lee, Hyuk-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.212-216
    • /
    • 2013
  • As virtual reality technologies are advanced rapidly, how to render 3D objects across modalities is becoming an important issue. This study is therefore aimed to investigate human discriminability on the curvature of 3D polygonal surfaces with focusing on the vision and touch senses because they are most dominant when explore 3D shapes. For the study, we designed a psychophysical experiment using signal detection theory to determine curvature discrimination for three conditions: haptic only, visual only, and both haptic and visual. The results show that there is no statistically significant difference among the conditions although the threshold in the haptic condition is the lowest. The results also indicate that rendering using both visual and haptic channels could degrade the performance of discrimination on a 3D global shape. These results must be considered when a multimodal rendering system is designed in near future.

Mean moment effect on circular thin-walled tubes under cyclic bending

  • Chang, Kao-Hua;Pan, Wen-Fung;Lee, Kuo-Long
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.495-514
    • /
    • 2008
  • In this paper, experimental and theoretical investigations of the effect of the mean moment on the response and collapse of circular thin-walled tubes subjected to cyclic bending are discussed. To highlight the influence of the mean moment effect, three different moment ratios r (minimum moment/ maximum moment) of -1, -0.5 and 0, respectively, were experimentally investigated. It has been found that the moment-curvature loop gradually shrinks with the number of cycles, and becomes stable after a few cycles for symmetric cyclic bending (r = -1). However, the moment-curvature loop exhibits ratcheting and increases with the number of cycles for unsymmetric cyclic bending (r = -0.5 or 0). In addition, although the three groups of tested specimens had three different moment ratios, when plotted in a log-log scale, three parallel straight lines describe the relationship between the controlled moment range and the number of cycles necessary to produce buckling. Finally, the endochronic theory combined with the principle of virtual work was used to simulate the relationship among the moment, curvature and ovalization of thin-walled tubes under cyclic bending. An empirical formulation was proposed for simulating the relationship between the moment range and the number of cycles necessary to produce buckling for thin-walled tubes subjected to cyclic bending with different moment ratios. The results of the experimental investigation and the simulation are in good agreement with each other.

Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams

  • Arefi, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.579-590
    • /
    • 2018
  • Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.

ON THE KNOTTED ELASTIC CURVES

  • Kweon, Dae Seop
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.113-118
    • /
    • 1997
  • According to the Bernoulli-Euler theory of elastic rods the bending energy of the wire is proportional to the total squared curvature of ${\gamma}$, which we will denote by $F({\gamma})=\int_{\gamma}k^2ds$. If the result of J.Langer and D.Singer [3] extend to knotted elastic curve, then we obtain the following. Let {${\gamma},M$} be a closed knotted elastic curve. If the curvature of ${\gamma}$ is nonzero for everywhere, then ${\gamma}$ lies on torus.

  • PDF

CONSTRAINTS ON PRE-INFLATION COSMOLOGY AND DARK FLOW

  • MATHEWS, GRANT J.;LAN, N.Q.;KAJINO, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.309-313
    • /
    • 2015
  • If the present universe is slightly open then pre-inflation curvature would appear as a cosmic dark-flow component of the CMB dipole moment. We summarize current cosmological constraints on this cosmic dark flow and analyze the possible constraints on parameters characterizing the pre-inflating universe in an inflation model with a present-day very slightly open ${\Lambda}CDM$ cosmology. We employ an analytic model to show that for a broad class of inflation-generating effective potentials, the simple requirement that the observed dipole moment represents the pre-inflation curvature as it enters the horizon allows one to set upper and lower limits on the magnitude and wavelength scale of pre-inflation fluctuations in the inflaton field and the curvature parameter of the pre-inflation universe, as a function of the fraction of the total initial energy density in the inflaton field. We estimate that if the current CMB dipole is a universal dark flow (or if it is near the upper limit set by the Planck Collaboration) then the present constraints on ${\Lambda}CDM$ cosmological parameters imply rather small curvature ${\Omega}_k{\sim}0.1$ for the pre-inflating universe for a broad range of the fraction of the total energy in the inflaton field at the onset of inflation. Such small pre-inflation curvature might be indicative of open-inflation models in which there are two epochs of inflation.

A Geometric Proof on Shortest Paths of Bounded Curvature (제한된 곡률을 갖는 최단경로에 대한 기하학적 증명)

  • Ahn, Hee-Kap;Bae, Sang-Won;Cheong, Otfried
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2007
  • A point-wise car-like robot moving in the plane changes its direction with a constraint on turning curvature. In this paper, we consider the problem of computing a shortest path of bounded curvature between a prescribed initial configuration (position and orientation) and a polygonal goal, and propose a new geometric proof showing that the shortest path is either of type CC or CS (or their substring), where C specifies a non-degenerate circular arc and S specifies a non-degenerate straight line segment. Based on the geometric property of the shortest path, the shortest path from a configuration to a polygonal goal can be computed in linear time.

Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection

  • Ehyaei, Javad;Daman, Mohsen
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.179-192
    • /
    • 2017
  • The transverse vibration of double walled carbon nanotube (DWCNT) embedded in elastic medium with an initial imperfection is considered. In this paper, Timoshenko beam theory is employed. However the nonlocal theory is used for modeling the nano scale of nanotube. In addition, the governing Equations of motion are obtained utilizing the Hamilton's principle and simply-simply boundary conditions are assumed. Furthermore, the Navier method is used for determining the natural frequencies of DWCNT. Hence, some parameters such as nonlocality, curvature amplitude, Winkler and Pasternak elastic foundations and length of the curved DWCNT are analyzed and discussed. The results show that, the curvature amplitude causes to increase natural frequency. However, nonlocal coefficient and elastic foundations have important role in vibration behavior of DWCNT with imperfection.

Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.479-493
    • /
    • 2018
  • In this paper nonlocal free vibration analysis of a doubly curved piezoelectric nano shell is studied. First order shear deformation theory and nonlocal elasticity theory is employed to derive governing equations of motion based on Hamilton's principle. The doubly curved piezoelectric nano shell is resting on Pasternak's foundation. A parametric study is presented to investigate the influence of significant parameters such as nonlocal parameter, two radii of curvature, and ratio of radius to thickness on the fundamental frequency of doubly curved piezoelectric nano shell.