• Title/Summary/Keyword: Curtain wall structure

Search Result 31, Processing Time 0.027 seconds

Heat Loss Audit and Assessment of the Greenhouses Using Infrared Thermal Image Analysis (적외선 열화상 분석을 통한 온실의 열손실 진단 및 평가)

  • Moon, Jong-Pil;Yun, Nam-Kyu;Lee, Sung-Hyoun;Kim, Hak-Joo;Lee, Su-Jang;Kim, Young-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • Unlike Urban building, horticultural facilities has a lot of heat loss through plastic or glass covering material which could be much influential to growing plant and consuming energy for heating greenhouse. In many cases, heat loss from a break of cover, a gap of joint sealing, the entrance to greenhouse and windows for ventilation are the main factors considered in calculating the heating load for horticultural facilities. however the normal observation through human eye and digital camera could not recognize where the heat loss occurred. but the infrared thermal image camera with detecting thermal difference could be very effective for noticing heat loss by analyzing infrared thermal image. In this study, greenhouse structure, covering material, internal and external provisions for Horticultural facilities were surveyed in different sites and Infrared thermal camera shooting and image analysis were performed for auditing heat loss from cultivation facilities The results from this study were that unexpected heat loss had been noticed in 7 representative cases of greenhouse such as side wall covered with single or double plastic, and the joint of horizontal thermal curtain, roof without horizontal thermal curtain, entrance to greenhouse, windows for ventilation. the most important factors for keeping heat energy were whether the horizontal thermal curtain with multifold thermal material was installed or not. The internal or external covering using multifold thermal curtain proved to be the most effective ways to keep heat energy from losing through heat transmission, heat radiation. from inside to outside the horticultural facilities.

A Study on Change in Window Transmitted Solar and the Resultant Wall Surface Convective Heat Gain with Regard to Slat Reflectance of External and Internal Blinds (실내·외 블라인드의 Slat 반사율에 따라 창호 일사투과량 및 그에 따른 벽체 대류열획득량 분석)

  • Hyun, In-Tak;Lee, Jae-Ho;Yoon, Yeo-Beom;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.565-571
    • /
    • 2014
  • Nowadays, to make buildings light weight and aesthetically pleasing, curtain wall structure are commonly used. Therefore, window to wall ratio is increasing, which has caused cooling and heating load in crease in buildings as well. This phenomenon has negative impact from energy point of view. This paper analyzes window and wall convective heat gain when the slat reflectance of external and internal blinds are changed for the better understanding of the fundamentals behind the phenomena. It was observed that, if slat reflectance is increased, window transmitted solar increases and convection heat rate is clearly affected. Among six surfaces including four walls, ceiling and floor, maximum convection heat rate occurs on the south wall in summer. On the other hand, ceiling and floor showed the lowest convection heat gain, since they are shared by adjacent floors.

Analysis of Temperature and Power Generation Characteristics of Bifacial BIPV System Applied into Curtain Wall (양면형 BIPV 시스템의 커튼월 적용에 따른 온도 및 발전특성 분석)

  • Kang, Jun-Gu;Kim, Yong-Jae;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • BIPV system not only produces electricity at building, but also acts as a material for building envelope. Thus, it can increase the economical efficiency of PV system by saving the cost for building materials. Bifacial solar cell can convert solar energy to electrical energy from both sides of the cell. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial solar cells. Therefore, many of the module manufacturers can easily use the bifacial solar cells without changing their manufacturing equipments. Moreover, bifacial PV system has much potential in building application by utilizing glass-to-glass structure of PV module. However, the electrical generation of the bifacial PV module depends on the characteristics of the building surface which faces the module, as well as outdoor environment. Therefore, in order to apply the bifacial PV module to building envelope as BIPV system, its power generation characteristics are carefully evaluated. For this purpose this study focused on the electrical performance of the bifacial BIPV system through the comparative outdoor experiments. As a result, the power generation performance of the bifacial BIPV system was improved by up to 21% compared to that of the monofacial BIPV system. Therefore, it is claimed that the bifacial BIPV system can replace the conventional BIPV system to improve the PV power generation in buildings.

A Study on Vortex Shedding Characteristics of Rectangular Marine Structure With Aspect Ratio (장방형 해양구조물의 변장비에 따른 와방출 특성에 관한 연구)

  • 김진구;조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.35-44
    • /
    • 1999
  • High negative pressure coefficient is formed in the corner of the bluff body structures. For many curtain wall designers this phenomena is of interest because this high negative pressure coefficient is adopted in structural calculation. The present study is aimed to investigate shedding vortex characteristics of two-dimensional rectangular prism flow. Unsteady calculation by finite difference method based upon SOLA is carried out for three aspect ratios(1:1, 1:2, 1:3) of Re=10$^4$ in viscous incompressible flow within infinite domain. Fluctuation of velocity components at various pick-up points and time variation of drag and lift coefficients are analysed by FFT method to reveal shedding vortex frequency patterns. At aspect ratio 1:1, one primary Strouhal number appears for about all pick-up points. At aspect ratio 1:2, two representative Strouhal numbers are classified by pick-up positions and their flows show two different reattachment patterns. For aspect ratio 1:3, frequency spectrum maintains multiple peaks.

  • PDF

Vibration Analysis of Building Floor Subjected to Walking Loads (보행하중을 받는 건축물 바닥판의 진동해석)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.414-421
    • /
    • 2001
  • Recently, the damping effect of building structures are greatly reduced because the use of non-structures members as like curtain wall are decreased and large open space are in need for the service of buildings. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities as like jumping, running and walking. These excessive vibration make the occupants uncomfortable and the serviceability deterioration. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict a series unit walking load and a periodic function at a node. But this method could not consider the moving effect of walking. In this study, natural frequency and damping ratio of plate structure are evaluated by heel drop tests. And new application of equivalent walking loads are introduced for vibration analysis of real slab system subjected to walking loads. The response obtained from the numerical analysis are compared well to the results measured by experimental tests. It is possible to efficiently analyze the vibration of floor which is subjected to walking loads by applying equivalent walking loads.

  • PDF

Development of Building Integrated PV(BIPV) module for the replacement of commercial building envelope materials (건물외피용 태양광발전 BIPV 모듈 개발 연구)

  • Yoon, Jongho;Kim, J.I;Lee, K.S.;Yu, G.J.
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.113-119
    • /
    • 2004
  • As Building Integrated Photovoltaic(BIPV) system replaces the conventional building finishing materials with PV modules, two function of electricity generation and building envelope can be expected. Therefore BIPV can be a good alternative technology for the 21 century environment-friendly buildings. The objective of this paper is to develope BIPV modules for a commercial buildings of which structure is mainly light-weight, curtain wall system. Two types of module are developed for a opaque part and a transparent part of building envelope. Current technology level and market status of Korea determines the configuration of developed BIPV modules. Architectural considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully reflected from the early stage of BIPV module design. Especially the survey result of current building envelope materials determines the size of unit BIPV modules and a unique cladding method for PV module installation is developed. Trial product of BIPV modules and cladding hardwares are manufactured and sample construction details for a demonstration building are proposed.

Exploring Effective BIM Workflow Among Practitioners by Technology Acceptance Model: A Case Study on the Construction of Facade

  • Guo, Jingjing;Yang, Jinze;Peng, Senlin;Mao, Chao
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.201-209
    • /
    • 2017
  • Facade structure system plays an important role in modern architecture and design. Many contractors start using Building Information Modeling (BIM) to help design and lay-out façade walls in recent years. However, there are still some users refuse to accept BIM on façade construction. Therefore, we employed Technology Acceptance Model (TAM) to assess the users acceptable of BIM work flow, with using a practical case of facade construction in Chongqing Wanda City. The factors that will affect the builder's decision of whether using BIM or not when construct façade, and the relationship among them will be found via this model. Through the analysis using TAM, this research found that the direct factors influencing the completely acceptance of BIM in façade construction is the BIM quality and Result Demonstrating, and the parameter impacting the intuition engendering is the Exterior Condition. Therefore, this paper proposes a more systemic model of BIM acceptance in curtain wall to analyze the user's acceptance. The solution can also offer a reference for future research and construct on façade structure. The acceptance model has the significance that it can help to analyze the reason why users refuse to use BIM in façade construction, thus to help users accept BIM.

  • PDF

A Study of Investigation the Actual conditions on Housing and Facilities for Korean Native Goat (흑염소 축사시설에 관한 실태조사 연구)

  • 최순호;정광화;조영무;강희설;김원호;김영근
    • Journal of Animal Environmental Science
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 2001
  • This study was conducted to investigate the actual conditions on housing and facilities for goat. This investigation of the actual conditions was investigated by the style of farm which was divided into sideline scale and speciality scale included 47 farms. The results are summarized as follows: Rearing scale was 48.9% for 50-100 heads per farm. Rearing type was 46.8% for grazing type and 53.2% for barn type. Housing type was 27.7% for simple frame housing and 72.3% for permanent housing. Pipe was used 80.8% with Pillar and Girder as the housing frame at farm. For the pipe used in farm, 27.7% of them was used for simple frame housing. Side wall was composed of cement and winch curtain to be 29.8%, slate roof to be 40.4%, pipe partition to be 38.3%, and cement floor to be 51.1%. Materials of feeding trough were wood and Zinc grater to be 41.5%, respectively. Type of feeding trough was square to be 70.2%. The feeding trough was located in barn to be 48.9%. Material of water supply facilities was plastic to be 87.2%. Type of water supply facilities was mostly square to be 76.6%. Water-trough was located in playground to be 48.9%. Parturition facilities were consisted of partition structure by group to be 42.5% and were mainly composed of pipe and wood. 46.8% of the barn did not have delivery room in the farm.

  • PDF

The study of temperature changes heat on the window glass using the rolling stock (철도 차량 유리창에 발열 유리 시스템 사용시 객실 온도 변화에 대한 연구)

  • Ahn, Jong-Kon;Yoo, Suk-Hee;Kang, Beom-Su;Kwon, Jin;Im, Won-Suk;Kang, Ju-Hee
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1109-1116
    • /
    • 2009
  • To the development of construction techniques and construction of glass-walled structure is generalized. Existing wall to support the role of the vertical load was lose. Features and the beautiful side of the curtain wall job was to be highlighted. Carriage access to the interior of the windows will cause pain in the neck with a cold feeling. And in the windows, drafty windows, under floor heating occurs despite the condensation phenomenon occurs. droplets that occurs around the window (the cause of the mold) in summer and winter, the heat energy and move through the glass is warmer outside. Therefore, to reduce energy efficiency affects absolutely. When you apply heat to the carriage window, the surface of the glass system, the spread of the cold air does not occur. Therefore, energy savings cars and heating of the interior is cold.

  • PDF

Analysis of Generation Characteristics of a Bifacial BIPV System According to Installation Methods (양면형 BIPV 시스템의 설치환경에 따른 발전특성 분석)

  • Kang, Jun Gu;Kim, Jin Hee;Kim, Jun Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.121-125
    • /
    • 2015
  • BIPV system is one of the best ways to harness PV module. The BIPV system not only produces electricity, but also acts as a building envelope. Thus, it has the strong point of increasing the economical efficiency by applying the PV modules to the buildings. Bifacial solar cells can convert solar energy to electrical energy from both sides of the module. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial soalr cells. Therefore, many of the module manufacturers can easily produce the bifacial solar cells without changing their manufacturing equipment. Moreover, bifacial BIPV system has much potential in building application by utilizing glass to glass structure. However, the performance of bifacial solar cells depends on a variety of factors, ranging from the back surface to surrounding conditions. Therefore, in order to apply bifacial solar cells to buildings, an analysis of bifacial PV module performance should be carried out that includes a consideration of various design elements, and reflects a wide range of installation conditions. As a result it found that the white insulation reflector type can improve the performance of the bifacial BIPV system by 16%, compared to the black insulation reflector type. The performance of the bifacial BIPV was also shown to be influenced by inclination angle, due to changes in both the amount of radiation captured on the front face and the radiation transmitted to the rear face through the transparent space. In this study is limited design condition and installation condition. Accordingly follow-up researches in this part need to be conducted.