• Title/Summary/Keyword: Current-voltage curve

Search Result 303, Processing Time 0.024 seconds

Development of a Compensating Algorithm for an Iron-cored Measurement CT using Flux-magnetizing Current Curves and Voltage-core Loss Current Curves (자속-자화 전류 곡선과 전압-철손 전류 곡선을 이용한 측정용 철심 변류기의 보상 알고리즘 개발)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kang, Hae-Gweon;Lee, Byung-Eun;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1849-1854
    • /
    • 2009
  • This paper describes the design, evaluation and implementation of a compensating algorithm for an iron-cored measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error of the CT. The proposed algorithm decomposes the exciting current into the core loss current and the magnetizing current and each of them is estimated. The core loss current is calculated from the secondary voltage and the voltage-core loss current curve. The core flux linkage is calculated and then inserted into the flux-magnetizing current curve to estimate the magnetizing current. The exciting current at every sampling interval is obtained by summing the core loss and magnetizing currents and then added to the measured current to obtain the correct secondary current. The voltage-core loss current curve and flux-magnetizing current curves, which are different from the conventional curves, are derived in this paper. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The experimental test results of an iron-core type electronic CT, which consists of the iron-core and the compensation board, are also included. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the CT.

A study on a modeling method about current-voltage characteristic of HTS tape considering resistance of stabilizer

  • Lee, W.S.;Lee, J.;Nam, S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.9-12
    • /
    • 2013
  • Current-voltage characteristic models of superconducting material are suggested by many researchers. These current-voltage characteristic models are important because they can be used for design or simulation of superconductor devices. But widely used current-voltage models of superconductor wire still have some limitations. For example, a standard E-J power model has no parameters related with stabilizer's resistance in superconductor wire. In this paper, a current-voltage characteristic modeling method for high temperature superconductor (HTS) tape with considering the effect of stabilizer is introduced. And a current-voltage characteristic of a HTS tape is measured under different stabilizer conditions. Those measured current-voltage characteristics of the HTS tape modeled with proposed modeling method and the modeling results are compared.

Compensating algorithm for the secondary current of a measurement type CT considering the secondary voltage-core loss current curve and the flux linkage-magnetizing current curve (2차 전압-철손 전류 곡선과 자속-자화 전류 곡선을 고려한 측정용 변류기 2차 전류 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.65-66
    • /
    • 2008
  • This paper proposes a compensating algorithm for the secondary current of the measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error between the primary current and the secondary current of the CT. The proposed algorithm decomposes the exciting current into the magnetizing current and the core loss current and each of them is estimated. The core loss current is calculated from the secondary voltage and the secondary voltage-core loss current curve. The core flux linkage is calculated and then inserted into the flux-current curve to estimate the magnetizing current. The exciting current at every sampling interval is obtained by summing the core-loss and magnetizing currents and then added to the measured current to compensate the secondary current. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The test results of the real CT were also included. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the CT.

  • PDF

Observation of Negative Resistance Region in Voltage-current Curve of Hollow Cathode Discharge (속이 빈 원통형음극 방전의 전압-전류 곡선에서 음 저항 영역 관찰)

  • Lee, Jun-Hoi;Lee, Sung-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.870-875
    • /
    • 2005
  • We measured the optogalvanic signal and discharge voltage-current(V-I) curve under the two different discharge conditions with different buffer gases, Ar, and Ne. When the Gd was used as a cathode material at low discharge current less than 10mA, a significant change was observed in the current-voltage curve. Time resolved optogalvanic signal measurement were measured by the diode laser of which wavelengths correspond to metastable transition line of these gases (Ar, Ne). From these measurements, we found that the characteristics of the V-I curve strongly depend on the Penning ionization process.

Finite Element Analysis of L.I.M. Considering the Voltage as a Driving Source (전압을 구동함수로 한 선형 유도전동기의 유한요소 해석)

  • 임달호;최창규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.250-257
    • /
    • 1991
  • In the analysis of the electric machine by finite element method, the primary current has been selected as a driving source. But the voltage is constant and the primary current varies according to the load condition in the pracdtical system. Therefore, in this paper, magnetic flux distribution, primary current, input effective power, power factor, efficiency and propulsion force of S.L.I.M. were calculated by the finite element method cnsidering the voltage as a driving source. Because the driving characteristics could not be measured in the S.L.I.M., voltage-current curve, 3-phase current curve, and propulsion force were measured at the starting and they were compared with theoretical values.

Electron transport properties of Y-type zigzag branched carbon nanotubes

  • MaoSheng Ye;HangKong, OuYang;YiNi Lin;Quan Ynag;QingYang Xu;Tao Chen;LiNing Sun;Li Ma
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.263-275
    • /
    • 2023
  • The electron transport properties of Y-type zigzag branched carbon nanotubes (CNTs) are of great significance for micro and nano carbon-based electronic devices and their interconnection. Based on the semi-empirical method combining tight-binding density functional theory and non-equilibrium Green's function, the electron transport properties between the branches of Y-type zigzag branched CNT are studied. The results show that the drain-source current of semiconducting Y-type zigzag branched CNT (8, 0)-(4, 0)-(4, 0) is cut-off and not affected by the gate voltage in a bias voltage range [-0.5 V, 0.5 V]. The current presents a nonlinear change in a bias voltage range [-1.5 V, -0.5 V] and [0.5 V, 1.5 V]. The tangent slope of the current-voltage curve can be changed by the gate voltage to realize the regulation of the current. The regulation effect under negative bias voltage is more significant. For the larger diameter semiconducting Y-type zigzag branched CNT (10, 0)-(5, 0)-(5, 0), only the value of drain-source current increases due to the larger diameter. For metallic Y-type zigzag branched CNT (12, 0)-(6, 0)-(6, 0), the drain-source current presents a linear change in a bias voltage range [-1.5 V, 1.5 V] and is symmetrical about (0, 0). The slope of current-voltage line can be changed by the gate voltage to realize the regulation of the current. For three kinds of Y-type zigzag branched CNT with different diameters and different conductivity, the current-voltage curve trend changes from decline to rise when the branch of drain-source is exchanged. The current regulation effect of semiconducting Y-type zigzag branched CNT under negative bias voltage is also more significant.

A Study on the Improvement of ZnO Varistor for Distribution Class Surge Arrester(18kV, 5kA) (배전급 피뢰기(18kV, 5kA)용 산화아연바리스타의 성능향상에 관한 연구)

  • Yoo, Deok-Son;Yoon, Han-Soo;Kim, Suk-Soo;Choi, Yeon-Gyu;Jang, Sung-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.744-746
    • /
    • 2003
  • A ZnO varistor with reference voltage 250V/mm was fabricated through the control of particle size in slurry and the variation of sintering conditions. It was found that to measure the flatness of the V-I characteristic curve in the small-current region and the flatness of the V-I characteristic curve in a large-current region was improved nonlinearity of the fabricated ZnO varistor. According to the IEC 60099-4 was measured the accelerated aging test and high current test of the distribution class surge varistor which is excellent in respect to the property of ZnO varistor.

  • PDF

Micro Electrochemical Machining using Anodic Polarization Curve (양극분극곡선을 미용한 미세 전해가공)

  • 최영수;강성일;전종업;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.999-1002
    • /
    • 2002
  • In this research, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result. it was confirmed that anodic voltage curve could be used very effectively for determining the optimal condition of micro-ECM, and the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.

  • PDF

Analysis of Current-voltage Characteristic Curve for the Solar Cell using MicroTec Tool (MicroTec을 이용한 태양전지 전류-전압 특성곡선 분석)

  • Jung, Hak-Kee;Han, Ji-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1045-1050
    • /
    • 2009
  • The current-voltage characteristics of solar cell has been analyzed using MicroTec in this paper. The current-voltage characteristics represents a efficiency of solar cell. The part of metal contact is doped highly, but active region is doped lowly. We have investigated the current-voltage characteristics according to variation of doping concentration from $10^{14}cm^{-3}$ to $10^{17}cm^{-3}$. We has also determined the doping concentration to obtain the maximum efficiency of solar cell, and analyzed this current-voltage characteristics.

Resonance characteristics and electrical properties of PZT-piezoelectric transformer (PZT계 압전변압기의 공진특성과 전기적 성질)

  • 박순태;정수태;이종헌
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 1995
  • The analysis of nonlinear equivalent circuit and the resonance characteristics of input current and output voltage were simulated, and their electrical properties are discussed in the transverse-type piezoelectric ceramic transformer. The nonlinear resonance characteristics of input current and output voltage showed by the thermal effect due to a higher driving current, the nonlinearity increased greatly as driving current increased. When load resistor was 100[M.ohm.], the nonlinear coefficient was -1.3. The nonlinear resonance curve of input current and output voltage for a variation of input voltage and load resistor agreed with the discussed theory. The output voltage increased nearly proportioned to input voltage when load resistors were below 50[M.ohm.], the voltage step-up ratio decreased when a load resistor was 100[M.ohm.] and their maximum value was 950.

  • PDF