• Title/Summary/Keyword: Current-gain cutoff frequency

Search Result 35, Processing Time 0.023 seconds

A 65-nm CMOS Low-Power Baseband Circuit with 7-Channel Cutoff Frequency and 40-dB Gain Range for LTE-Advanced SAW-Less RF Transmitters (LTE-Advanced SAW-Less 송신기용 7개 채널 차단 주파수 및 40-dB 이득범위를 제공하는 65-nm CMOS 저전력 기저대역회로 설계에 관한 연구)

  • Kim, Sung-Hwan;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.678-684
    • /
    • 2013
  • This paper describes a low-power baseband circuit for SAW-less LTE-Advanced transmitters. The proposed transmitter baseband circuit consists of a 2nd-order Tow-Thomas type active RC-LPF and a 1st-order passive RC LPF. It can provide a 7 multi-channel cut-off frequencies and wide gain control range of -41 dB ~ 0 dB with a 1-dB step. The proposed 2nd-order active RC-LPF adopts an op-amp in which three other sub-op amps are in parallel connected to reduce DC current for different cutoff frequency. In addition, each sub-op amp adopts both Miller and feed-forward phase compensation method to achieve an UGBW of more than 1-GHz with a small DC power consumption. The proposed baseband circuit is implemented in 65-nm CMOS technology, consuming DC power from 6.3 mW to 24.1 mW from a 1.2V supply voltage for each different cut-off frequency.

W-Band MMIC chipset in 0.1-㎛ mHEMT technology

  • Lee, Jong-Min;Chang, Woo-Jin;Kang, Dong Min;Min, Byoung-Gue;Yoon, Hyung Sup;Chang, Sung-Jae;Jung, Hyun-Wook;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.549-561
    • /
    • 2020
  • We developed a 0.1-㎛ metamorphic high electron mobility transistor and fabricated a W-band monolithic microwave integrated circuit chipset with our in-house technology to verify the performance and usability of the developed technology. The DC characteristics were a drain current density of 747 mA/mm and a maximum transconductance of 1.354 S/mm; the RF characteristics were a cutoff frequency of 210 GHz and a maximum oscillation frequency of 252 GHz. A frequency multiplier was developed to increase the frequency of the input signal. The fabricated multiplier showed high output values (more than 0 dBm) in the 94 GHz-108 GHz band and achieved excellent spurious suppression. A low-noise amplifier (LNA) with a four-stage single-ended architecture using a common-source stage was also developed. This LNA achieved a gain of 20 dB in a band between 83 GHz and 110 GHz and a noise figure lower than 3.8 dB with a frequency of 94 GHz. A W-band image-rejection mixer (IRM) with an external off-chip coupler was also designed. The IRM provided a conversion gain of 13 dB-17 dB for RF frequencies of 80 GHz-110 GHz and image-rejection ratios of 17 dB-19 dB for RF frequencies of 93 GHz-100 GHz.

A new continuous-time current-mode integrator for realization of low-voltage current-mode CMOS filter (저전압 전류모드 CMOS 필터 구현을 위한 새로운 연속시간 전류모드 적분기)

  • 방준호;조성익;김동용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.1068-1076
    • /
    • 1996
  • In this paper, a new continuous-time current-mode integrator as basic building block of the low-voltage analyog current-mode active filters is proposed. Compared to the current-mode integrator which is proposed by Zele, the proposed current-mode integrator had higher unity gain frequency and output impedance in addition to lower power dissipation. And also, a current-mode third-order lowpass active filter is designed with the proposed current-mode integrator. The designed circuits are fabricated using the ORBIT's $1.2{\mu}{\textrm{m}}$ deouble-poly double-metal CMOS n-well process. The experimental results show that the filter has -3dB cutoff frequency at 44.5MHz and 3mW power dissipation with single 3.3V power supply and also $0.12mm^{2}$ chip area.

  • PDF

High-performance 94 GHz MMIC Low Noise Amplifier using Metamorphic HEMTs (Metamorphic HEMT를 이용한 우수한 성능의 94 GHz MMIC 저잡음 증폭기)

  • Kim, Sung-Chan;An, Dan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.48-53
    • /
    • 2008
  • In this paper, we developed the MMIC low noise amplifier using 100 nm metamorphic HEMTs technology in combination with coplanar circuit topology for 94 GHz applications. The $100nm\times60{\mu}m$ MHEMT devices for the MMIC LNA exhibited DC characteristics with a drain current density of 655 mA/mm, an extrinsic transconductance of 720 mS/mm. The current gain cutoff frequency $(f_T)$ and maximum oscillation frequency $(f_{max})$ were 195 GHz and 305 GHz, respectively. The realized MMIC LNA represented $S_{21}$ gain of 14.8 dB and noise figure of 4.6 dB at 94 GHz with an over-all chip size of $1.8mm\times1.48mm$.

60 GHz Low Noise Amplifier MMIC for IEEE802.15.3c WPAN System (IEEE802.15.3c WPAN 시스템을 위한 60 GHz 저잡음증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.227-228
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of 60 GHz low noise amplifier MMIC for IEEE802.15.3c WPAN system. The 60 GHz LNA was designed using ETRI's $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The performances of the fabricated 60 GHz LNA MMIC are operating frequency of $60.5{\sim}62.0\;GHz$, small signal gain ($S_{21}$) of $17.4{\sim}18.1\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-14{\sim}-3\;dB$, output reflection coefficient ($S_{22}$) of $-11{\sim}-5\;dB$ and noise figure (NF) of 4.5 dB at 60.75 GHz. The chip size of the amplifier MMIC was $3.8{\times}1.4\;mm^2$.

  • PDF

A Design of Fully-Differential Bipolar Current Subtracter and its Application to Current-Controlled Current Amplifier (완전-차동형 바이폴라 전류 감산기와 이를 이용한 전류-제어 전류 증폭기의 설계)

  • Cha, Hyeong-U
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.836-845
    • /
    • 2001
  • A Novel fully-differential bipolar current subtracter(FCS) and its application to current controlled current amplifier(CCCA) for high-accuracy current-mode signal processing were designed. To obtain full-differential current output, the FCS was symmetrically composed of two current follower with low current-input impedance. The CCCA to control output current by the bias current was consisted of the subtracter and a current gain amplifier(CGA) with single-ended current output.. The simulation result shows that the FCS has current-input impedance of 5 Ω and a good linearity. The CCCA has 3-dB cutoff frequency of 20 MHz for the range over bias current 100 $\mu$A to 20 mA. The power dissipation of the FCS and CCCA are 1.8 mW and 3 mW, respectively.

  • PDF

A Design of Novel Class-A bipolar $CCII{\pm}$ and Its Application to output Current Controllable CCII+ (새로운 A급 바이폴라 $CCII{\pm}$와 이를 이용한 출력 전류 제어 가능한 CCII+ 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.48-56
    • /
    • 2011
  • Novel class-A bipolar current conveyor($CCII{\pm}$) with differential current output and its application to output current controllable CCII+ for electronic tuning systems are designed. The $CCII{\pm}$ is consists of conventional CCII+ and complementary cross current sources. The CCII+ with controllable the output current consists of the $CCII{\pm}$ and a current gain amplifier with single-ended current output. The simulation result shows that the $CCII{\pm}$ has current input impedance of $1.9{\Omega}$ and a good linearity for voltage and current follower. The proposed CCII+ has 3-dB cutoff frequency of 10MHz for the range over bias control current $100{\mu}A$ to 10mA. The range of output current control is four decade. The power dissipation of the CCII+ is 4.5mW at supply voltage of ${\pm}2.5V$.

A Design of Bipolar Transresistance Amplifiers (바이폴라 트랜스레지스턴스 증폭기 설계)

  • Cha, Hyeong-U;Im, Dong-Bin;Song, Chang-Hun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.828-835
    • /
    • 2001
  • Novel bipolar transresistance amplifier(TRA) and its offset-compensated TRA for high-performance current-mode signal processing are described. The TRA consist of two current follower for a current inputs, a current summer for the current-difference, a resistor for the current to voltage converter, and a voltage follower for the voltage output. The offset-compensated TRA adopts diode-connected npn and pnp transistor to reduce offset voltage in the TRA. The simulation results show that the TRA has impedance of 0.5 Ω at the input and the output terminal. The offset voltages at these terminals is 40 mV The offset-compensated TRA has the offset voltage of 1.1 mV and the impedance of 0.25 Ω. The 3-dB cutoff frequency is 40 MHz for the two TRA's when used as a current to voltage converter with unit-gain transresistance. The power dissipation is 11.25 mW.

  • PDF

40nm InGaAs HEMT's with 65% Strained Channel Fabricated with Damage-Free $SiO_2/SiN_x$ Side-wall Gate Process

  • Kim, Dae-Hyun;Kim, Suk-Jin;Kim, Young-Ho;Kim, Sung-Wong;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • Highly reproducible side-wall process for the fabrication of the fine gate length as small as 40nm was developed. This process was utilized to fabricate 40nm InGaAs HEMTs with the 65% strained channel. With the usage of the dual $SiO_2$ and $SiN_x$ dielectric layers and the proper selection of the etching gas, the final gate length (Lg) was insensitive to the process conditions such as the dielectric over-etching time. From the microwave measurement up to 40GHz, extrapolated fT and fmax as high as 371 and 345 GHz were obtained, respectively. We believe that the developed side-wall process would be directly applicable to finer gate fabrication, if the initial line length is lessened below the l00nm range.

Optimization of 70nm nMOSFET Performance using gate layout (게이트 레이아웃을 이용한 70nm nMOSFET 초고주파 성능 최적화)

  • Hong, Seung-Ho;Park, Min-Sang;Jung, Sung-Woo;Kang, Hee-Sung;Jeong, Yoon-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.581-582
    • /
    • 2006
  • In this paper, we investigate three different types of multi-fingered layout nMOSFET devices with varying $W_f$(unit finger width) and $N_f$(number of finger). Using layout modification, we improve $f_T$(current gain cutoff frequency) value of 15GHz without scaling down, and moreover, we decrease $NF_{min}$(minimum noise figure) by 0.23dB at 5GHz. The RF noise can be reduced by increasing $f_T$, choosing proper finger width, and reducing the gate resistance. For the same total gate width using multi-fingered layout, the increase of finger width shows high $f_T$ due to the reduced parasitic capacitance. However, this does not result in low $NF_{min}$ since the gate resistance generating high thermal noise becomes larger under wider finger width. We can obtain good RF characteristics for MOSFETs by using a layout optimization technique.

  • PDF