• Title/Summary/Keyword: Current vector field

Search Result 173, Processing Time 0.029 seconds

Implementation of SVPWM Module for the Multi-Motor Control (다중모터 제어를 위한 SVPWM 모듈의 구현)

  • Ha, Dong-Hyun;Hyun, Dong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.124-129
    • /
    • 2009
  • Recently, PWM inverter is widely utilized for many industrial applications such as high performance drive and space vector pulse width modulation(SVPWM) inverter which has high voltage ratio and low harmonics compared to conventional PWM inverter. This paper presents the implementation on a field programmable gate array(FPGA) of a SVPWM module for a voltage source inverter. The SVPWM module consists of PWM generator, current and position sensor interface and dead time compensator. The implemented SVPWM module can be integrated with a digital signal processor(DSP) to provide a flexible and effective solution for high performance voltage source inverter and for the use of multi-motor control. The performance of SVPWM module is verified by simulation and several experimental results.

High Efficiency Vector Control of Induction Motor Using Optimal Flux Control (최적 자속 제어를 이용한 유도진동기의 백터 제어형 고효율 속도 제어)

  • Joo, Hyeong-Gil;Kim, Kyeong-Hwa;Chung, Se-Kyo;Hong, Chan-Ho;Bae, Jung-Do;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.579-581
    • /
    • 1994
  • The efficiency optimized speed control system of Induction Motor is proposed At light load, the IM has poor efficiency because of relatively high magnetizing current. In this paper, by employing the field oriented control with flux controller which the motor is operated at optimal slip frequency, the proposed system has good performance and high efficiency. In simulation, the performance, loss and efficiency of the proposed optimal flux control system are compared with those of the coventional constant flux operation. In conclusion, the efficiency is raised by 2.55%, the loss is decreased by 0.1[p.u].

  • PDF

A Novel Direct Torque Control of Induction Machines based on Stator Flux (고정자 자속을 기반으로 한 유도전동기의 새로운 직접 토크 제어)

  • 박준현;정종진;최종우;김흥근;노의철;부경대학교전기제어계측공학부조교수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.297-302
    • /
    • 2002
  • The direct torque control(DTC) of induction machines has the advantages of a simple control scheme and a very quick and robust torque response and its application is extended in the traction field. However, some drawbacks of the conventional DTC strategy using a hysteresis controller are the relatively large torque ripple in the steady state and the variation of switching frequency according to the amplitude of hysteresis bands and the motor operating conditions. In this paper, a navel direct t()roue control scheme of induction machines based on stator flux control and Space Vector Modulation Is proposed to acquire the advantage of a fixed switching period and the minimization of the torque and stator current ripple in a wide speed range. The effect of proposed method has been proven by simulations and experiments.

A Study on the High-Performance Vector control of Induction Motor for Industrial Application (산업설비 적용을 위한 유도전동기의 고성능 벡터제어에 관한 연구)

  • 손진근;김진상;김병진;김국진;전희종
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.57-64
    • /
    • 1995
  • This paper deals with the modeling and simulation to control the torque and speed of an induction motor using field-oriented control methods. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are calculated from rotor angular velocity and stator current. As results of modeling and digital simulation with a voltage source inverter, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

High Speed Operation of Spindle Motor in the Field Weakening Region (약계자 영역에서의 스핀들 모터 고속운전)

  • Park S. H.;Yoon J. M.;Yu J. S.;Shin S. C.;Won C. Y.;Choi C.;Lee S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.274-278
    • /
    • 2004
  • This paper presents a strategy to drive built in-type spindle induction motor which is used as CNC (Computer Numerical Control) in the industrial world. The direct vector control which is robust to the changed machine parameters in the high speed range is used in this motor control method. And electrical model of induction motor presents the basic idea based on observer structure, which is composed of voltage model and current model. But the former has the defects in low speed range, the latter has the defects of sensitivity to motor parameter. Thus Gopinath model flux estimator which is the closed loop flux observer based on two models for the rotor flut estimation is used in this paper. Moreover this paper presents to drive the spindle motor in the high speed range by using the flux weakening control.

  • PDF

Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters

  • Talib, Md. Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Hasim, Ahmad Shukri Abu
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.806-813
    • /
    • 2013
  • This paper aims to compare the performance of three phase induction motor drives using Five Leg Inverter (FLI) and Three Leg Inverter (TLI) configurations. An Indirect Field Oriented Control (IFOC) method using a TLI is well established and incorporated for high performance speed drives in various industries. The FLI dual motor drive system on the other hand shows good workability in the independent control of two induction motor drives simultaneously. In this experiment, the IFOC method is utilized for both drive systems, and Space Vector Pulse Width Modulation (SVPWM) is used to generate pulses for both inverters. For the FLI, the Double Zero Sequence (DZS) Injection technique is used to generate the modulation signal. The complete experiment setup is done by using a DSpace 1103 controller board. The individual motor performances are analyzed using similar schemes, equipment setups and controller parameter values. The results show similar speed performance response capability between the single motor operation using a TLI system and the two motor operation using a FLI system based on the variable speed range either in forward or reverse operation. They also show similar load rejection abilities. However, the single motor with a TLI has a better power quality aspect such as ripple current and total harmonics distortion (THD).

Characteristic Analysis of Linear Permanent Magnet Synchronous Motor according to steel and back iron. (철심의 유/무에 따른 직선형 영구 자석 동기 모터의 특성 해석)

  • Jang, Seok-Myeong;You, Dae-Joon;Lee, Sung-Ho;Chioi, Jang-Young;Jang, Won-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1054-1056
    • /
    • 2003
  • The slotless Permanent-Magnet Linear Synchronous Motors (PMLSM) have been developed for factory automation, transportation applications, wafer steppers, conveyance system, and so on. The current analysis and design are treated in air-cored PMLSM. This paper presents a design and analysis solutions for the general class of iron-cored Permanent magnet Linear Synchronous motor (PMLSM). In our design and analysis, rotor consisting of permanent magnets and slot less iron-cored coil stator are treated in a uniform way via vector potiential. For one such motor structure we give analytical formulas for its magnetic field, opitimal permanent magnet and winding coil thickness, trust force. We also provide comparisons of three types in Halbach, vertical, and horizontal magnet array.

  • PDF

A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain (EV 파워트레인에서 IPMSM의 토크 제어를 통한 에너지 변환에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.845-850
    • /
    • 2021
  • In this study, the energy conversion characteristics and design of electric vehicle (EV: Electric Vehicle) powertrain were performed. An interior permanent magnet synchronous motor (IPMSM) was targeted as a power source for the EV powertrain, and control was performed. In order to drive the IPMSM, two regions are considered: a constant torque and a constant output (field-weakening) region. The design of the control system for IPMSM was constructed based on the d-q reference frame (vector control). To determine the static characteristics of motor torque appearing in two areas of IPMSM, a torque control system and a d axis current control system of IPMSM were implemented and proposed. Matlab-Simulink software was used for characteristic analysis. Finally, by applying IPMSM to the powertrain model under the actual EV vehicle level conditions, simulation results of the proposed control system were performed and characteristics were analyzed.

Forward Motion Compensation Content-Adaptive Irregular Meshes (컨텐트 적응적 비정형 메쉬를 이용한 전방향 움직임보상)

  • Jeon, Byeungwoo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.149-159
    • /
    • 2001
  • The conventional block-based motion prediction suffers, especially in low bit-rate video application, from shortcomings such as blocking artifacts of motion field and unstable motion estimation. To overcome the deficiency, this paper proposes one method of adopting a new motion compensation scheme based on the irregular triangular mesh structure while keeping the current block-based DCT coding structure of H.263 as much as possible. To represent the reconstructed previous frame using minimal number of control points, the proposed method designs content-adaptive irregular triangular meshes, and then, estimate the motion vector of each control point using the affine transformation-based matching. The predicted current frame is obtained by applying the affine transformation to each triangular mesh. Experiment with the several real video sequences shows improvement both in objective and subjective picture quality over the conventional block-based H.263 method.

  • PDF

Development of an anisotropic spatial interpolation method for velocity in meandering river channel (비등방성을 고려한 사행하천의 유속 공간보간기법 개발)

  • You, Hojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.455-465
    • /
    • 2017
  • Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.