• Title/Summary/Keyword: Current limiting operation

Search Result 142, Processing Time 0.041 seconds

Analysis of operation performance of PHILS-based superconducting current limiter connected to MVDC system

  • Seok-Ju Lee;Jae In Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.54-59
    • /
    • 2023
  • In this paper, we analyze experimental results by applying the PHILS model to a lab-scale superconducting current limiter system for its actual application in medium-voltage direct current (MVDC) systems. Superconducting current limiters exhibit effective current-limiting performance in circuit breaker operations, particularly in limiting large fault currents within a short period, addressing the challenges posed by the increasing use of renewable energy and the integration of DC medium-voltage distribution systems. The development of such superconducting current limiters faces various technical and cost disadvantages, especially when applying a medium-voltage 35kV level system, which is intended for future introduction. The proven lab-scale superconducting current limiter system and the PHILS model are combined and integrated into the actual system. Our plan involves analyzing the limiter's performance, assessing its impact on the system, and preparing for its application in future medium-voltage systems. Utilizing RTDS, a simulation was conducted by connecting actual scaled-down equipment and systems, with the analysis results presented.

Increase of Operational Current in a SFCL using Series or Parallel Coupling of Coils (코일의 직.병렬결합을 이용한 초전도 사고전류제한기의 동작전류 증가)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.46-51
    • /
    • 2007
  • The fault current limiting characteristics of superconducting fault current limiter(SFCL) using magnetic coupling of two coils were investigated. This SFCL consists of a high-TC superconducting(HTSC) element and two coils with series or parallel connection on the same iron. In normal time, the inner magnetic fluxes generated by two coils are canceled in case that the HTSC element keeps superconducting state. However, in case that the resistance of the HTSC element happens by a short-circuit the magnetic fluxes, not cancelled, induce the voltages across two coils and the fault current can be limited by the impedance of this SFCL. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the operating current of this SFCL increased more than that of HTSC element's independent operation.

Analysis on operation of Protective Equipment According to Application of SFCL in a Power Distribution System (분산전원이 도입된 배전계통에 초전도전류제한기 적용에 따른 보호기기 동작분석)

  • Lee, Yong-Seok;Jung, Sang-Hyun;Lim, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.67-68
    • /
    • 2011
  • This paper analysed a protective equipment in power distribution system linked distribution power system when a superconducting fault current limiter(SFCL) is installed. This paper focused on a recloser, because the recloser is a general protective equipment. When power distribution system linked distribution power system, a fault current is increased by adding fault current of distribution power system. The increased fault current makes many problems. But SFCLs are limiting fault current and help the protective equipment to operate normal process. We analysed the operation of protective equipment in power distribution system linked distribution power system with SFCLs.

  • PDF

Analysis of Characteristics on the High-speed SFCL According to Single Line-ground-fault in the Reclosing Operation (재폐로 동작시 1선 지락사고에 따른 고속도 초전도 한류기의 특성 분석)

  • Jeong, In-Sung;Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.612-615
    • /
    • 2015
  • This paper proposed an high-speed superconducting fault current limiter (H-SFCL). The proposed H-SFCL functioned the initial fault current could be covered by the SFCL and the continued fault current after the one-cycle from fault occurrence could be controlled current-limiting-element of the normal conduction. To investigate the operation characteristics of the H-SFCL, a simulation power system was constructed, and a single line-to-ground fault was occurred. As a result, the H-SFCL limited the fault current by more than about 70%, and it was confirmed that the electric power burden was reduced compared to the SFCL that consisted only of superconductors.

Electromagnetic characteristics of non-inductively wound coil according to gap length between layers (무유도 초전도 한류 코일의 층간 간격에 따른 전자기적 특성 연구)

  • Yang, Seong-Eun;Park, Dong-Keun;Chang, Ki-Sung;Kim, Young-Jae;Ahn, Min-Cheol;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.822_823
    • /
    • 2009
  • Superconducting fault current limiters (SFCLs) provide one of the most effective solutions to cope with enormous increase of fault current level. The 13.2 kV/ 630 A class resistive SFCL using coated conductor (CC) was developed and its short-circuit test was successful. Successful commercialization of the SFCL requires that no loss is produced by impedance of limiting coil during normal operation. Since the limiting coil consists of inner layer and outer layer, gap length between the layers is an important parameter to analyze the electromagnetic characteristics of coil. This paper deals with the electromagnetic characteristics of coil according to gap length through the simulation and analysis in comparison with experiment results.

  • PDF

Effect of Operating Parameters on the Removal Performance of Copper Ion by Electrodialysis (전기투석을 이용한 구리이온의 제거 시 운전인자의 영향)

  • Jung, Hyo-Sang;Lee, Gangchoon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • To evaluate the feasibility of electrodialysis for copper removal from industrial wastewater, the effect of operating parameters on the removal of copper was experimentally estimated. The limiting current density (LCD) linearly increased with the copper concentration and the flow rate. The time when the copper concentration of diluate reaches to 3 mg/L was linearly proportional to initial concentration of diluate, and the concentration of concentrate did not affect the removal rate. Increase in the flow rate gave a positive effect on the removal rate and became insignificant at flow rates greater than 2.4 L/min. The removal rate increased with the applied voltage. From the operation of the electrodialysis module used in this research, the flow rate of 2.4 L/min and the voltage corresponding to the 80~90% of LCD were found be the optimum operating condition for the copper removal from highly concentrated copper solutions.

Quench Characteristics of Flux-lock type Superconducting Fault Current Limiter using Open-loop Iron Core (개루프 철심을 이용한 자속구속형 초전도한류기의 퀜치특성)

  • Nam, Gueng-Hyun;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Lee, Na-Young;Lim, Sung-Hun;Park, Chung-Ryul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.159-160
    • /
    • 2005
  • The superconducting fault current limiter(SFCLs) provides the effect such as enhancement in the power system reliability due to limiting fault current in a few miliseconds. The Flux-lock type SFCL using the YBCO film among various type SFCLs consists of the primary and the secondary copper coils that are wound in parallel each other through the iron core. The operation can be controlled by adjusting the inductances and the winging directions of each the coil. We compared the current limiting performance on the additive and the subtractive polarity winding directions in case of an open-loop iron core. To analyze quench characteristics, we experimented various phase angle.

  • PDF

Comparison of Fault Current Limiting Characteristics According to Facility in Power System (전력계통의 사고전류 저감 설비별 특성 비교)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.127-129
    • /
    • 2005
  • We investigated the fault current limiting characteristics according to the various facilities in power system. Power systems are becoming larger and larger for meeting electric power demand. Therefore, the over-currents resulting from contingencies such as short circuits are increasing higher, which causes the ratings of circuit breakers(CBs) to increase. Upgrading or replacement of CBs is not difficult from the technical and economical point of view. Bus split is being adopted into a part of 154 kV power systems, but it has adverse effects such as overload to neighboring power systems, increased voltage fluctuation, and decreased power system stability. For 345 kV power systems, the bus split measure is not feasible and dc reactors are being suggested. The superconducting fault current limiter is a protection gear of new concept that limits fault current automatically in a few milliseconds. It can also provide the effect of CB capacity increase, relaxation of power machine criteria, enhancement in power system reliability, and flexible power system operation.

  • PDF

Study on Improvement of Overcurernt Relay (OCR)'s Operation Due to Application of Superconducting Fault Current Limiter (SFCL) in Power Distribution System with a Dispersed Generation (분산전원이 도입된 배전계통에 초전도한류기 적용에 따른 과전류계전기 동작향상 연구)

  • Lim, Seung-Taek;Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.300-304
    • /
    • 2017
  • Due to the introduction of various types of dispersed generations (DGs) with larger capacity in a power distribution system, the short-circuit current is expected to be increased, which more requires for the effective fault current limiting methods. As one of the promising countermeasures, the superconducting fault current limiter (SFCL) has been noticed. However, the decreased fault current by SFCL affects the operation of the overcurrent relay (OCR), representative protective device in a power distribution system. In this paper, the operation of the overcurrent relay due to the application of a SFCL in a power distribution system with DG linked by its bus line was analysed through the short-circuit tests. To analyze the effect of the SFCL application in a power distribution system with DG, the experimental simulated circuits were designed and the short-circuit tests for the power distributed system assembled with the DG, the OCR and the SFCL were carried out. Through the analysis on the short-circuit tests, the application of the SFCL in a power distribution system with DG could be confirmed to be contributed to the operational improvement of overcurrent relay.

Development of Current Limiting COS Fuse Link with Improved Overcurrent and Protection Coordination performance (과전류 차단과 보호협조 성능이 향상된 한류형 COS 퓨즈링크 개발)

  • Kim, Youn-Hyun;Kim, Young-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.129-136
    • /
    • 2020
  • A Cut Out Switch (COS) is used for line protection and pole transformer protection in power systems. The COS used to protect the pole transformer is installed on the power side of the pole transformer to protect the electric equipment from fault currents. The COS is composed largely of a body and a fuse holder, and when the fault current is energized, the element of the fuse link in the fuse holder is melted to block the fault current. The arc generated when the COS fuse link is blown causes fire and noise, causing discomfort to residents in the surrounding area, and the arc flame can cause secondary damage to the peripheral device. In this study, a current-limiting COS fuse with improved overcurrent blocking performance rather than explosion type was developed to solve the arc and noise problems during COS operation. The overcurrent breaking performance of the current-limiting COS improves the reliability by developing a striker and COS fuse bracket. In addition, this study aimed to verify the performance of the developed current-limiting COS fuse through a test at an authorized institution.