• Title/Summary/Keyword: Current distribution imaging

Search Result 59, Processing Time 0.026 seconds

A Compatibility Assessment and Verification of Suitable to DICOM of PACS DATA CD : Current Situation Investigation of Korea (PACS DATA CD의 호환성 평가 및 DICOM 적합성에 대한 검증을 통한 기준 제시)

  • Jeong, Jae-Ho;Sung, Dong-Wook;Park, Bum-Jin;Son, Gi-Gyeong;Kang, Hui-Doo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • Purpose To analyze the input and output error of data CD which records the image information and the problems of the server of the compatibility. And to report a compatibility assessment and verification of suitable to DICOM of PACS data CD with investigation of current situation of Korea METHOD AND MATERIALS Date CD of each 8 vendors in 30 hospitals was analyzed. We grasped a main verification element existence of a generation compatibility of data CD. The items of element are media identification, DICOM compression, DICOM viewer send, specified object information modify, auto-run, DICOM content type, etc, and give 1 point for each item. We divided the assessment about an each item into 5 levels. Verification about. DICOM conformance by using DICOM validation tool kit is shown to be classified pass or fail according to error occurrence of tag valus. Classify the prequency of tag occurrence as the item. RESULTS The average point of date CD compatibility is 8 point (very good), lowest is 5 point (6.6%), and highest is 10 point (23%_. Most high occurrence frequency's distribution is 7 point (36.6%). As a result of verification about DICOM conformance, PASS in 8 occurrence frequency's distribution is 7 point (36.6%). As a result of verification about DICOM maximum length numbers (14 items), DICOM error of modality (10 items), discord of pixel data length (6 items). etc.

  • PDF

Analysis of Anisotropic Characteristic in Fiber Reinforced Polymer for the Knee Brace Using the Eddy Current Inspection (와전류 탐상기법을 이용한 무릎보조기용 섬유강화 폴리머의 이방특성 분석)

  • Kim, Cheol-Woong;Park, Cheon-Woong;Shin, Yong-Hoon;Seo, Hae-Young;Lee, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1533-1538
    • /
    • 2008
  • The development of new material systems like Carbon Fiber Reinforced Polymer (CFRP) places ever higher demands on the techniques for non-destructive material characterisation. Image-producing eddy current methods also need to satisfy these demands. Eddy-current imaging of FRP is based on the anisotropic electrical properties of the material investigated. Significant differences in conductivity between carbon fibres, polymer matrix and integrated functional components can be found. The availability of high-resolution sensors enables access to the local distribution of the electromagnetic properties. The static and dynamic procedures for isolating influential characteristics, already in use in eddy-current technology, can now be supplemented by topographical images. The precondition for a successful implementation of the eddy-current procedure is a deeper understanding of the image-generating process which allows correct interpretation of the images obtained.

  • PDF

MREIT Conductivity Imaging of Pneumonic Canine Lungs: Preliminary Post-mortem Study

  • Kim, Hyung-Joong;Kim, Young-Tae;Jeong, Woo-Chul;Minhas, Atul S.;Lee, Tae-Hwi;Lim, Chae-Young;Park, Hee-Myung;Kwon, O-Jung;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.94-98
    • /
    • 2010
  • In magnetic resonance electrical impedance tomography (MREIT), a current-injection MR imaging method is adopted to produce a cross-sectional image of an electrical conductivity distribution in addition to MR images. The purpose of this study was to test the feasibility of MREIT for differentiating the canine lung parenchyma without and with pneumonia. Three normal healthy beagles and two mixed breed dogs with pneumonia were used. After attaching electrodes around the chest, we placed the dog inside our MR scanner. We injected as much as 30 mA current in a form of short pulses into the chest region. Reconstructed conductivity images of normal canine lungs exhibit a peculiar pattern of a relatively coarse salt and pepper noise. On the contrary, conductivity images of pneumonic canine lungs show significantly enhanced contrast of the lesions while the corresponding MR images show a little bit of contrast in the middle and caudal lung parenchyma due to the accumulation of pleural fluid. This preliminary study indicates that MREIT imaging of the chest may deliver unique new diagnostic information.

Estimating dark matter mass for the most massive high-z galaxy cluster, SPT-CL J2106-5844 using weak-lensing analysis with HST observations

  • Kim, Jinhyub;Jee, Myungkook James;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.67.2-67.2
    • /
    • 2016
  • SPT-CL J2106-5844 is known to be one of the most massive galaxy clusters ($M_{200}{\sim}1.27{\times}10^{15}M_{sun}$) ever found at z > 1. Given its redshift (z ~ 1.132), the mass of this cluster estimated by Sunyaev-Zel'dovich effect and X-ray observation is too large compared with the current ${\Lambda}CDM$ cosmology prediction. Mass estimation from these methods can be biased because they require assumptions on hydrostatic equilibrium, which are not guaranteed to hold at such high redshift (about 40% of the current age of the Universe). Thus, we need to verify the mass of this interesting cluster using gravitational lensing, which does not require such assumptions. In this work, we present our preliminary result of dark matter mass and its spatial mass distribution of SPT-CL J2106-5844 using weak-lensing analysis based on HST optical/NIR deep imaging data. We compare mass estimates from different sources and discuss cosmological implications.

  • PDF

Bubble size characteristics in the wake of ventilated hydrofoils with two aeration configurations

  • Karn, Ashish;Ellis, Christopher R;Milliren, Christopher;Hong, Jiarong;Scott, David;Arndt, Roger EA;Gulliver, John S
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • Aerating hydroturbines have recently been proposed as an effective way to mitigate the problem of low dissolved oxygen in the discharge of hydroelectric power plants. The design of such a hydroturbine requires a precise understanding of the dependence of the generated bubble size distribution upon the operating conditions (viz. liquid velocity, air ventilation rate, hydrofoil configuration, etc.) and the consequent rise in dissolved oxygen in the downstream water. The purpose of the current research is to investigate the effect of location of air injection on the resulting bubble size distribution, thus leading to a quantitative analysis of aeration statistics and capabilities for two turbine blade hydrofoil designs. The two blade designs differed in their location of air injection. Extensive sets of experiments were conducted by varying the liquid velocity, aeration rate and the hydrofoil angle of attack, to characterize the resulting bubble size distribution. Using a shadow imaging technique to capture the bubble images in the wake and an in-house developed image analysis algorithm, it was found that the hydrofoil with leading edge ventilation produced smaller size bubbles as compared to the hydrofoil being ventilated at the trailing edge.

Effect of Particulate Matter on Human Health, Prevention, and Imaging Using PET or SPECT

  • Zaheer, Javeria;Jeon, Jongho;Lee, Seung-Bok;Kim, Jin Su
    • Progress in Medical Physics
    • /
    • v.29 no.3
    • /
    • pp.81-91
    • /
    • 2018
  • Particulate matter (PM) in dust causes serious pathological conditions, and it has been considered a critical health issue for many years. Respiratory disorders such as bronchitis, asthma, and chronic inflammation, are the most common illnesses due to PM that appears as dust. There is evidence that cardiovascular and neurological abnormalities are caused by PM. Although an extensive amount of work has been conducted on this topic, including studies on the nature of the particles, particle size measurements, particle distribution upon inhalation, the health effects of fine particles, disease prevention, diagnosis, and treatment, to this date, there is still a considerable lack of knowledge in these areas. Therefore, the identification of the key components that cause diseases owing to PM, and the specific diagnoses of the diseases, is important. This review will explore the current literature on the origin and nature of PM and their effects on human health. In addition, it will also highlight the approaches that have been adopted in order to diagnose the effects of PM using positron emission tomography (PET) or single-photon emission computerized tomography (SPECT).

Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future

  • Jung, Na Young;Chang, Jin Woo
    • Journal of Korean Medical Science
    • /
    • v.33 no.44
    • /
    • pp.279.1-279.16
    • /
    • 2018
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.

Periscope Imaging System Design and Analysis for Flame Front Visualization (화염 정면 가시화를 위한 페리스코프 영상 시스템 설계 및 해석)

  • Shin, Jaeik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.16-23
    • /
    • 2019
  • This paper describes the design and analysis of a periscope imaging system installed at the engine test facility in the Agency for Defense Development. The periscope system is a cylinder-shaped image observation system installed at the rear of the engine and at the top of the diffuser. The periscope system has high risk of breaking because it is directly affected by high temperature (2300 K) and products of combustion. Thus, we used 1D heat transfer calculation, and 2D and 3D CFD analysis to confirm the heat flux and temperature distribution. Also, the cooling performance was verified. In the current design, using the periscope system, we can see flame shapes, control of the nozzle, and stability of the exhaust flow visually.

COMPUTATIONAL ANTHROPOMORPHIC PHANTOMS FOR RADIATION PROTECTION DOSIMETRY: EVOLUTION AND PROSPECTS

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.239-250
    • /
    • 2006
  • Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as magnetic resonance (MR) imaging and computed tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed.

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.