DOI QR코드

DOI QR Code

Effect of Particulate Matter on Human Health, Prevention, and Imaging Using PET or SPECT

  • Zaheer, Javeria (Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Jeon, Jongho (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Seung-Bok (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Jin Su (Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS))
  • Received : 2018.09.01
  • Accepted : 2018.09.11
  • Published : 2018.09.30

Abstract

Particulate matter (PM) in dust causes serious pathological conditions, and it has been considered a critical health issue for many years. Respiratory disorders such as bronchitis, asthma, and chronic inflammation, are the most common illnesses due to PM that appears as dust. There is evidence that cardiovascular and neurological abnormalities are caused by PM. Although an extensive amount of work has been conducted on this topic, including studies on the nature of the particles, particle size measurements, particle distribution upon inhalation, the health effects of fine particles, disease prevention, diagnosis, and treatment, to this date, there is still a considerable lack of knowledge in these areas. Therefore, the identification of the key components that cause diseases owing to PM, and the specific diagnoses of the diseases, is important. This review will explore the current literature on the origin and nature of PM and their effects on human health. In addition, it will also highlight the approaches that have been adopted in order to diagnose the effects of PM using positron emission tomography (PET) or single-photon emission computerized tomography (SPECT).

Keywords

References

  1. Kang D, Kim JE. Fine, ultrafine, and yellow dust: emerging health problems in Korea. J Korean Med Sci. 2014;29: 621-622. https://doi.org/10.3346/jkms.2014.29.5.621
  2. Shepherd M. NARSTO report Ch 1.Perspective for manging PM. US, Mexico, Canada. NARSTO 2004.53-68.
  3. Jemmett-Smith BC, Marsham JH, Knippertz P, Gilkeson CA. Quantifying global dust devil occurrence from meteorological analyses. Geophys Res Lett. 2015;42: 1275-1282. https://doi.org/10.1002/2015GL063078
  4. Wang X, Cheng H, Che H, et al. Modern dust aerosol availability in northwestern China. Sci Rep. 2017;7: 8741. https://doi.org/10.1038/s41598-017-09458-w
  5. Kandler K, Benker N, Bundke U. Chemical composition and complex refractive index of saharan mineral dust at Izana, Tenerife (Spain) derived by electron microscopy. Atmospheric Environ. 2007;41: 8058-8074. https://doi.org/10.1016/j.atmosenv.2007.06.047
  6. Maxwel-Meier K, Weber R, Song C, Orsini, Ma Y. Inorganic composition of fine particles in mixed mineral dustpollution plumes observed from airborne measurements during ACE-Asia. J Geophys Res: Atmospheres 2004;109: D19S07.
  7. Farfel MR, Orlova AO, Lees PSJ, Rohde C, Ashley PJ, Chisolm JJ. A study of urban housing demolitions as sources of lead in ambient dust: demolition practices and exterior dust fall. Environmental Health Perspectives. 2003;111: 1228-1234. https://doi.org/10.1289/ehp.5861
  8. Bucko MS, Magiera T, Johanson B, Petrovsky E, Pesonen LJ. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environ Pollut. 2011;159: 1266-1276. https://doi.org/10.1016/j.envpol.2011.01.030
  9. Takada H, Onda T, Harada M, Ogura N. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo metropolitan area. Sci Total Environ. 1991;107: 45-69. https://doi.org/10.1016/0048-9697(91)90249-E
  10. Sofilic T, Rastovcan-Mioc A, Cerjan-Stefanovic S, Novosel- Radovic V, Jenko M. Characterization of steel mill electricarc furnace dust. J Hazard Mater. 2004;109: 59-70. https://doi.org/10.1016/j.jhazmat.2004.02.032
  11. Wheatley AD, Sadhra S. Occupational exposure to diesel exhaust fumes. Ann Occup Hyg. 2004;148: 369-376.
  12. Snider G, Weagle C. L, MurdymootooK, et al. Variation in global chemical composition of $PM_{2.5}$: emerging results from SPARTAN.Atmos. Chem. Phys. 2016;16: 9629-9653.
  13. Chen W, Liu Y, Wang H, Hnizdo E, et al. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study. PLoS Med. 2012; 9(4): e1001206. https://doi.org/10.1371/journal.pmed.1001206
  14. Jeong SH, Jeong HE, Byong KS, et al. Comparison of air pollution and the prevalence of allergy-related diseases in Incheon and Jeju City. Korean J Pediatrics 2011;54: 501-506. https://doi.org/10.3345/kjp.2011.54.12.501
  15. Laney AS, Petsonk EL, Hale JM, Wolfe AL, Attfield MD. Potential determinants of coal worker's pneumoconiosis, advanced pneumoconiosis, and progressive massive fibrosis among underground coal miners in the United States, 2005-2009. Am J Public Health. 2012;102 (Suppl 2): S279-283. https://doi.org/10.2105/AJPH.2011.300427
  16. Mamuya SH, Moen B, Bratveit M. Quartz exposure and increased respiratory symptoms among coal mine workers in Tanzania. East Afr J Public Health. 2011;8: 190-195.
  17. Moreno T, Kojima T, Querol X, et al. Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan. Scie Total Environ. 2012;424: 182-192. https://doi.org/10.1016/j.scitotenv.2012.02.060
  18. Neghab M, Mohraz MH, Hassanzadeh J. Symptoms of respiratory disease and lung functional impairment associated with occupational inhalation exposure to carbon black dust. J Occup Health. 2011;53: 432-438. https://doi.org/10.1539/joh.11-0083-OA
  19. Sahle W, Krantz S, Christensson B, Laszlo I. Preliminary data on hard metal workers exposure to tungsten oxide fibres. Sci Total Environ. 1996;191: 153-167. https://doi.org/10.1016/0048-9697(96)05256-4
  20. Bharadwaj P, Burney J. Cognition impact of sand and dust storms highlights future research needs?. Lancet. Planet Health. 2018;2(5); e196-e197. https://doi.org/10.1016/S2542-5196(18)30071-8
  21. Wu J.Z, Dan-Dan G, Lin-fu Z, Ling Y, Ying Z, Qi Yuan L. Effects of particulate matter on allergic respiratory diseases. Chronic Dis Transl Med. 2018;4: 95-102. https://doi.org/10.1016/j.cdtm.2018.04.001
  22. Chen B, Kan H. Air pollution and population health: a global challenge. Environ Health Preventive Med. 2008;13: 94-101. https://doi.org/10.1007/s12199-007-0018-5
  23. Kolpakova AF, Sharipov RN, Kolpakov FA. Air pollution by particulate matter as the risk factor for the cardiovascular diseases. Gigiena i Sanitariia. 2017;96: 133-137.
  24. Tsai S-S, Goggins WB, Chiu HF, Yang C-Y. Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. Stroke. 2003;34: 2612-2616. https://doi.org/10.1161/01.STR.0000095564.33543.64
  25. Pinault LL, Weichenthal S, Crouse DL, et al. Associations between fine particulate matter and mortality in the 2001 Canadian Census Health and Environment Cohort. Environ Res. 2017;159: 406-415. https://doi.org/10.1016/j.envres.2017.08.037
  26. Nemery B, Hoet PHM, Nemmar A. The Meuse valley fog of 1930: an air pollution disaster. Lancet 2001;357: 704-708. https://doi.org/10.1016/S0140-6736(00)04135-0
  27. Logan WPD. Mortality in the London fog incident, 1952. Lancet 1953;261: 336-338. https://doi.org/10.1016/S0140-6736(53)91012-5
  28. Brook RD, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease. A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association.Circ. 2004; 109: 2655-2671. https://doi.org/10.1161/01.CIR.0000128587.30041.C8
  29. Milojevic A. Paul W, Ben A, et al. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality. Heart. 2014;100: 1093-1098. https://doi.org/10.1136/heartjnl-2013-304963
  30. Middleton N, Panayiotis Y, Savvas K, et al. A 10-year timeseries analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the effect of short-term changes in air pollution and dust storms. Environ Health 2008;7: 39. https://doi.org/10.1186/1476-069X-7-39
  31. Pope IC, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287: 1132-1141. https://doi.org/10.1001/jama.287.9.1132
  32. Urch B, Frances S, Paul S, et al. Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environ Health Perspectives 2005;113: 1052-1055. https://doi.org/10.1289/ehp.7785
  33. Brook RD, Brooke JR, Urch B, et al. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circ. 2002;105: 1534-1536. https://doi.org/10.1161/01.CIR.0000013838.94747.64
  34. Peters A, Stephenie VK, Margit H, et al. Exposure to traffic and the onset of myocardial infarction. New England J Med. 2004;351: 1721-1730. https://doi.org/10.1056/NEJMoa040203
  35. Ueda K, Shimizu A, Nitta H, Inoue K. Long-range transported Asian dust and emergency ambulance dispatches. Inhalation Toxicol 2012;24: 858-867. https://doi.org/10.3109/08958378.2012.724729
  36. Lee J-T, Kim H, Cho YS, et al. Air pollution and hospital admissions for ischemic heart diseases among individuals 64+ years of age residing in Seoul, Korea. Arch Environ Health: Int J. 2003;58: 617-623. https://doi.org/10.3200/AEOH.58.10.617-623
  37. Tam WWS, Wong TW, Wong AHS. Effect of dust storm events on daily emergency admissions for cardiovascular diseases. Circ. 2012;76: 655-660. https://doi.org/10.1253/circj.CJ-11-0894
  38. Mueller-Anneling LJ, O'Neill ME, Thorne PS. Biomonitoring for assessment of organic dust-induced lung inflammation. Eur Resp J. 2006;27: 1096-1102. https://doi.org/10.1183/09031936.06.00092204
  39. Kang J-H, Keller JJ, Chen C-S, Lin H-C. Asian dust storm events are associated with an acute increase in pneumonia hospitalization. Ann Epidemiol. 2012;22: 257-263. https://doi.org/10.1016/j.annepidem.2012.02.008
  40. Burnett RT, Smith-Doiron M, Stieb D, Cakmak S, Brook JR. Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations. Arch Environ Health: Int J. 1999;54: 130-139. https://doi.org/10.1080/00039899909602248
  41. Schwartz J. $PM_{10}$ ozone, and hospital admissions for the elderly in Minneapolis-St. Paul, Minnesota. Arch Environ Health: Int J. 1994;49: 366-374. https://doi.org/10.1080/00039896.1994.9954989
  42. Fusco D, Forestiere F, Michelozzi P, et al. Air pollution and hospital admissions for respiratory conditions in Rome, Italy. Eur Resp J. 2001;17: 1143-1150. https://doi.org/10.1183/09031936.01.00005501
  43. Wagner GR. Asbestosis and silicosis. Lancet. 1997;349: 1311-1315. https://doi.org/10.1016/S0140-6736(96)07336-9
  44. Middleton EL. Industrial pulmonary disease due to the inhalation of dust with special reference to silieosis. Lancet. 1936;139: 59-64.
  45. Bhattacharjee P, Paul S, Bhattacharjee P. Risk of occupational exposure to asbestos, silicon and arsenic on pulmonary disorders: understanding the genetic-epigenetic interplay and future prospects. Environ Res. 2016;147: 425-434. https://doi.org/10.1016/j.envres.2016.02.038
  46. Michel O, Kipps J, Duchateau J, et al. Severity of asthma is related to endotoxin in house dust. Am J Resp. Crit Care Med. 1996;154: 1641-1646. https://doi.org/10.1164/ajrccm.154.6.8970348
  47. Lin M-T, Chew TK, Chun C-C, et al. Association of meteorological factors and air $NO_2$ and $O_3$ concentrations with acute exacerbation of elderly chronic obstructive pulmonary disease. Sci Rep. 2018;8: 10192. https://doi.org/10.1038/s41598-018-28532-5
  48. Tiwari RR, Sharma YK, Saiyed HN. Tuberculosis among workers exposed to free silica dust. Indian J Occup and Environ Med. 2007;11: 61-64. https://doi.org/10.4103/0019-5278.34530
  49. Middleton NJ. Desert dust hazards: A global review. Aeolian Res. 2017;24: 53-63. https://doi.org/10.1016/j.aeolia.2016.12.001
  50. Zhang ZF, Yu SZ, Zhou GD. Indoor air pollution of coal fumes as a risk factor of stroke. Shanghai. Am J Public Health. 1988;78: 975-977. https://doi.org/10.2105/AJPH.78.8.975
  51. Block ML, Calderon-Garciduenas. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends in Neurosci. 2009;32: 506-516. https://doi.org/10.1016/j.tins.2009.05.009
  52. Calderon-Garciduenas L, Mora-Tiscareno A, Ontiveros E, et al. Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs. Brain and Cognit. 2008;68: 117-127. https://doi.org/10.1016/j.bandc.2008.04.008
  53. Lee KK, Miller MR, Shah ASV. Air pollution and stroke. J Stroke. 2018;20: 2-11. https://doi.org/10.5853/jos.2017.02894
  54. Yang C-Y, Chen Y-S, Chiu H-F, Goggins W. Effects of Asian dust storm events on daily stroke admissions in Taipei, Taiwan. Environ Res. 2005; 99(1):79-84. https://doi.org/10.1016/j.envres.2004.12.009
  55. Kang JH, Liu TC, Keller J, Lin HC. Asian dust storm events are associated with an acute increase in stroke hospitalisation. J Epidemiol Commun Health. 2013;67: 125-131. https://doi.org/10.1136/jech-2011-200794
  56. Scheuch G, Bennett W, Borgstrom L, et al. Deposition, imaging, and clearance: what remains to be done?. J Aerosol-Med Pulm Drug Deliv 2010; 23 (Suppl 2):S39-57. https://doi.org/10.1089/jamp.2010.0839
  57. Laube BL, Jashnani R, Dalby RN, Zeitlin PL. Targeting aerosol deposition in patients with cystic fibrosis. Chest. 2000;118: 1069-1076. https://doi.org/10.1378/chest.118.4.1069
  58. EC Prat t, TM Shaf fer, J Grimm. Nanopart icles and radiotracers:advances towards radionanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2016;8: 872-890. https://doi.org/10.1002/wnan.1402
  59. AD Nemmar, PHM Hoest, et al. Passage of inhaled particle into the blood circulation in humans. Circ 2002:105:1411-414.
  60. Berridge M.S., Lee Z., Heald D.L. Pulmonary distribution and kinetics of inhaled $^{11}C$-tiamcinolone acetonide. J Nucl Med.2000;41: 1603-1611.
  61. Visser TJ, Van WA,Doze P, et al. Characterisation of ${\beta}2$-adrenoceptors, using the agonist $^{11}C$-formoterol and positron emission tomography. Eur J Pharmacol. 1998;361: 35-41. https://doi.org/10.1016/S0014-2999(98)00694-3
  62. Guenther KJ, Yoganathan S, Garofalo R, et al. Synthesis and in vitro evaluation of $^{18}F$- and $^{19}F$-labeled insulin: A new radiotracer for PET-based molecular imaging studies. J Med Chem. 2006;49: 1466-1474. https://doi.org/10.1021/jm0509344
  63. Iozzo P, Osman S, Glaser M, et al. In vivo imaging of insulin receptors by PET: preclinical evaluation of $^{125}I$ and $^{124}I$ labelled human insulin. Nuc Med Biol. 2002;29: 73-82. https://doi.org/10.1016/S0969-8051(01)00286-4
  64. Dolovich MB. $^{18}F$-FDG positron emission tomographic imaging of pulmonary functions, pathology, and drug delivery. Proc Am Thorac Soc 2009;6: 477-485. https://doi.org/10.1513/pats.200904-023AW
  65. Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. 2014;11: 443-57. https://doi.org/10.1038/nrcardio.2014.80
  66. Capitanio S, Nordin AJ, Noraini AR, Rossetti C. PET/CT in nononcological lung diseases: current applications and future perspectives. Eur Resp Rev. 2016;25: 247-258. https://doi.org/10.1183/16000617.0051-2016
  67. Dusad A, Geoffrey MT, Lynell WK, et al. Vitamin D supplementation protects against bone loss following inhalant organic dust and lipopolysaccharide exposures in mice. Immunol Res. 2015;62: 46-59. https://doi.org/10.1007/s12026-015-8634-4
  68. Nordgren TM, Friemel TD, Heires AJ, et al. The omega-3 fatty acid docosahexaenoic acid attenuates organic dustinduced airway inflammation. Nutrients. 2014;6: 5434-54. https://doi.org/10.3390/nu6125434
  69. Shim H.E, Lee J.Y, Lee C.H, et al. Quantification of inhaled aerosol particles composed of toxic house hold disinfectant using radioanalytical method. Chemophere.2018;207: 649-654. https://doi.org/10.1016/j.chemosphere.2018.05.132
  70. Baldacci S, Maio S, Cerrai S, et al. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Resp Med. 2015;109: 1089-1104. https://doi.org/10.1016/j.rmed.2015.05.017
  71. Jalbert I, Golebiowski B. Environmental aeroallergens and allergic rhino-conjunctivitis. Curr Opin Allergy Clin Immunol 2015;15: 476-481. https://doi.org/10.1097/ACI.0000000000000205
  72. Tian Y, Xiao X, Yiqun W, et al. Fine particulate air pollution and first hospital admissions for ischemic stroke in Beijing, China. Sci Rep. 2017;7(1): 3897. https://doi.org/10.1038/s41598-017-04312-5
  73. Akbarzadeh MA, Khaheshi I, Sharifi A, et al. The association between exposure to air pollutants including $PM_{10}$, $PM_{2.5}$, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide concentration and the relative risk of developing STEMI: A case-crossover design. Environ Res. 2018; 161: 299-303. https://doi.org/10.1016/j.envres.2017.11.020

Cited by

  1. 고전압 전극 두께와 집진판 간격에 따른 전기집진기의 미세먼지 집진효율 및 오존발생 특성 vol.14, pp.4, 2018, https://doi.org/10.11629/jpaar.2018.14.4.171
  2. Ultrafine PVDF Nanofibers for Filtration of Air-Borne Particulate Matters: A Comprehensive Review vol.13, pp.11, 2018, https://doi.org/10.3390/polym13111864