• Title/Summary/Keyword: Current conduction path

Search Result 27, Processing Time 0.028 seconds

Analysis of Conduction-Path Dependent Off-Current for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 차단전류에 대한 전도중심 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.575-580
    • /
    • 2015
  • Asymmetric double gate(DG) MOSFET is a novel transistor to be able to reduce the short channel effects. This paper has analyzed a off current for conduction path of asymmetric DGMOSFET. The conduction path is a average distance from top gate the movement of carrier in channel happens, and a factor to change for oxide thickness of asymmetric DGMOSFET to be able to fabricate differently top and bottom gate oxide thickness, and influenced on off current for top gate voltage. As the conduction path is obtained and off current is calculated for top gate voltage, it is analyzed how conduction path influences on off current with parameters of oxide thickness and channel length. The analytical potential distribution of series form is derived from Poisson's equation to obtain off current. As a result, off current is greatly changed for conduction path, and we know threshold voltage and subthreshold swing are changed for this reasons.

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jeong Hak-Gi;Lee Jae-Hyeong;Lee Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.861-864
    • /
    • 2006
  • In this paper conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to obtain the analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper is compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gateoxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according to channel doping concentration.

  • PDF

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-546
    • /
    • 2008
  • In this paper, conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gate oxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according doping concentration.

Conduction Path Dependent Threshold Voltage for the Ratio of Top and Bottom Oxide Thickness of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 상하단 산화막 두께비에 따른 전도중심에 대한 문턱전압 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2709-2714
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness of asymmetric double gate MOSFET. The asymmetric double gate MOSFET has the advantage that the factor to be able to control the current in the subthreshold region increases. The analytical potential distribution is derived from Poisson's equation to analyze the threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness. The Gaussian distribution function is used as charge distribution. This analytical potential distribution is used to derive off-current and subthreshold swing. By observing the results of threshold voltage and conduction path with parameters of bottom gate voltage, channel length and thickness, projected range and standard projected deviation, the threshold voltage greatly changed for the ratio of top and bottom gate oxide thickness. The threshold voltage changed for the ratio of channel length and thickness, not the absolute values of those, and it increased when conduction path moved toward top gate. The threshold voltage and conduction path changed more greatly for projected range than standard projected deviation.

Analysis on I-V of DGMOSFET for Device Parameters (소자파라미터에 대한 DGMOSFET의 전류-전압 분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Jeong, Dong-Soo;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.709-712
    • /
    • 2012
  • In this paper, current-voltage have been considered for DGMOSFET, using the analytical model. The Possion equation is used to analytical. Threshold voltage is defined as top gate voltage when drain current is $10^{-7}A$. Investigated current-voltage characteristics of channel length changed length of channel from 20nm to 100nm. Also, The changes of current-voltage have been investigated for various channel thickness and doping concentration using this model, given that these parameters are very important in design of DGMOSFET. The deviation of conduction path and the influence of conduction path on current-voltage have been considered according to the dimensional parameters of DGMOSFET.

  • PDF

Movement of Conduction Path for Electron Distribution in Channel of Double Gate MOSFET (DGMOSFET에서 채널내 전자분포에 따른 전도중심의 이동)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.805-811
    • /
    • 2012
  • In this paper, movement of conduction path has been analyzed for electron distribution in the channel of double gate(DG) MOSFET. The analytical potential distribution model of Poisson equation, validated in previous researches, has been used to analyze transport characteristics. DGMOSFETs have the adventage to be able to reduce short channel effects due to improvement for controllability of current by two gate voltages. Since short channel effects have been occurred in subthreshold region including threshold region, the analysis of transport characteristics in subthreshold region is very important. Also transport characteristics have been influenced on the deviation of electron distribution and conduction path. In this study, the influence of electron distribution on conduction path has been analyzed according to intensity and distribution of doping and channel dimension.

Modulated Carrier Control for Interleaved Continuous Conduction Mode(CCM) Boost Power Factor Correction Converter

  • Kim, Hye-jin;Choi, Kyu-sik;Cho, B.H.;Choi, Hang-seok
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.195-196
    • /
    • 2012
  • In recent years, in an effort to improve the efficiency and the power density of the front-end power factor correction(PFC), the interleaving of multiple converter is employed. The conventional interleaved continuous conduction mode(CCM) boost PFC converter requires input and output voltage sensing and three current sensing to obtain current balancing between modules. In this paper, the interleaved CCM PFC converter based on modulated carrier control is proposed. With the proposed method, two phase interleaved PFC can be realized simply without line voltage sensing resistor and can achieve current balancing without additional current sensing resistor on common return path. The simulation studies are carried out to verify the effectiveness of the proposed control scheme.

  • PDF

Improved Dual-Path Energy Recovery Circuit using a Current Source and a Voltage Source for High Resolution and Large-Sized Plasma Display Panel

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.544-546
    • /
    • 2008
  • An improved dual-path energy recovery circuit (ERC) using a current source and a voltage source for plasma display panel (PDP) is proposed. The proposed ERC uses the voltage source to charge a panel and the current source to discharge the panel. Thus, the proposed circuit can make the panel charge to $V_S$ and discharge to 0V, fully and it is possible to achieve zero voltage switching (ZVS) of all switches in H-bridge inverter and zero current switching (ZCS) of all switches in the ERC. Moreover, it has less conduction and switching loss in ERC devices by the dual energy recovery paths for charging and discharging the panel. Furthermore, it has features of canceling the gas discharge current, high performance and the low cost ERC components. The operation principle and features of the proposed ERC are presented in detail and verified with 42-inch SD PDP.

  • PDF

Analysis, Design, and Implementation of a High-Performance Rectifier

  • Wang, Chien-Ming;Tao, Chin-Wang;Lai, Yu-Hao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.905-914
    • /
    • 2016
  • A high-performance rectifier is introduced in this study. The proposed rectifier combines the conventional pulse width modulation, soft commutation, and instantaneously average line current control techniques to promote circuit performance. The voltage stresses of the main switches in the rectifier are lower than those in conventional rectifier topologies. Moreover, conduction losses of switches in the rectifier are certainly lower than those in conventional rectifier topologies because the power current flow path when the main switches are turned on includes two main power semiconductors and the power current flow path when the main switches are turned off includes one main power semiconductor. The rectifier also adopts a ZCS-PWM auxiliary circuit to derive the ZCS function for power semiconductors. Thus, the problem of switching losses and EMI can be improved. In the control strategy, the controller uses the average current control mode to achieve fixed-frequency current control with stability and low distortion. A prototype has been implemented in the laboratory to verify circuit theory.

An Analysis of Noise Characteristics according to PWM Method in 2-Phase Conduction Method (2상 통전 방식에서의 PWM 방식에 따른 소음 특성 분석)

  • Oh, Jae-Yoon;Cheong, Dal-Ho;Kim, Jung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2632-2634
    • /
    • 1999
  • In this paper, we analyze the characteristics of Motor Noise according to PWM method, especially in the case of 2-phase conduction method. There are two types of PWM methods used usually. One is Lower-PWM and the other is Upper&Lower PWM. Because there is a difference between freewheeling path of both methods, Current profiles of two methods are different. This makes the difference of Torque Ripple and so difference of Noise Performance. In this paper, the path will be analyzed and the comparison of Noise performance of two types of PWM methods will be showed by experiment results.

  • PDF