• Title/Summary/Keyword: Cultured bone cell

Search Result 288, Processing Time 0.033 seconds

Effect of Ulmus davidiana Planch (Ulmaceae) on T-lymphocyte-producing cytokines such as IL-2, IL-6, and $IFN-{\gamma}$ production in collagen-induced arthritis of rats

  • Kang, Han-Ju;Kim, Kyung-Ho;Jo, Hyun-Seog;Hwang, Min-Seob;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.33-41
    • /
    • 2005
  • Objective : The effect of Ulmus davidiana Planch(UD), which has long been known to have anti-inflammation and protective effects on damaged tissue, inflammation and bone among other functions, on the development of type II collagen (CII)-induced arthritis (CIA) in rats was studied. Methods : Male rats were immunized with an emulsion of $200\;{\mu}g$ of CII and complete Freund's adjuvant (CFA). The rats were then given intraperitoneal stimulation of Ulmus davidiana Planch herbal acupuncture(UDHA)or saline during the experiment. When compared with rats treated with saline as control, UDHA at doses of more than $20{\mu}g/100\;g$ rat once a day for 7 days inhibited the ability of inguinal lymph node cells to produce T cell cytokines interleukin-2, interleukin-6, $IFN-{\gamma}$ when the cells were obtained from rats 14 days after immunization and cultured in vitro with CII. Results : When rats were injected intraperitoneally, UD -treated group and control group rats did not differ significantly when low doses of UD was given to rats. Conclusion : The recommended dose of UD in the management and treatment of rat CIA will be more than $20{\mu}g/100\;g$, which is two-firth of human therapeutic dose. From the results, it was concluded that the effect of UDHA is dependent of dosage.

  • PDF

Inhibition of MMP-13 mRNA expression by ginseng saponin in fetal rat calvarial cells (백서 태자 두개관세포에서 인삼 사포닌에 의한 MMP-13 mRNA 발현 억제)

  • Kim, Yang-Yi;Ciu, De-Zhe;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.277-288
    • /
    • 2005
  • There is a potential role of collagenase-3 in alveolar bone loss and periodontal disease progression, we need to develope or find chemotherapeutic drugs or herbal agents which may regulate the expression of MMP-13. Ginseng saponin, one of the major components of Korea ginseng(panax ginseng) root, has many various biologic effects, such as cytotoxic effect, tumoricidal effects, cytokine regulations, and protein biosynthesis effect. The purpose of this study was to determine the effects of Korea red ginseng saponin on MMP-13 gene expression in osteoblasts. The experimental groups were cultured with ginseng saponin in concentration of 1.0, 10, 25, 50, 100, 250 and $500{\mu}g/ml$ for MTT assay. Primary rat calvarial cells were pre-treated for 1 hour with ginseng saponin(100 ${\mu}g/ml$) and then stimulated with $IL-1{\beta}(1.0ng/ml)$ and PTH(10 nM). MMP-13 gene expression was evaluated by RT-PCR. The results were as follows: Ginseng saponin was cytotoxic to osteoblast at concentration exceeding $250{\mu}g/ml$ for longer than 24 hours in tissue culture(p<0.01). In RT-PCR analysis, steady state MMP-13 mRNA levels were increased approximately 350% by $IL-1{\beta}$, and 400% by PTH when normalized to untreated control. $IL-1{\beta}-indued$ MMP-13 mRNA expression was reduced 50% by pretreatment with ginseng saponin. But ginseng saponin didn't inhibit MMP-13 expression from PTH stimulated cells. This results suggest that ginseng saponin Inhibit $IL-1{\beta}-indued$ MMP-13 mRNA expression.

Mitochondrial Transplantation Ameliorates the Development and Progression of Osteoarthritis

  • A Ram Lee;Jin Seok Woo;Seon-Yeong Lee;Hyun Sik Na;Keun-Hyung Cho;Yeon Su Lee;Jeong Su Lee;Seon Ae Kim;Sung-Hwan Park;Seok Jung Kim;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.14.1-14.17
    • /
    • 2022
  • Osteoarthritis (OA) is a common degenerative joint disease characterized by breakdown of joint cartilage. Mitochondrial dysfunction of the chondrocyte is a risk factor for OA progression. We examined the therapeutic potential of mitochondrial transplantation for OA. Mitochondria were injected into the knee joint of monosodium iodoacetate-induced OA rats. Chondrocytes from OA rats or patients with OA were cultured to examine mitochondrial function in cellular pathophysiology. Pain, cartilage destruction, and bone loss were improved in mitochondrial transplanted-OA rats. The transcript levels of IL-1β, TNF-α, matrix metallopeptidase 13, and MCP-1 in cartilage were markedly decreased by mitochondrial transplantation. Mitochondrial function, as indicated by membrane potential and oxygen consumption rate, in chondrocytes from OA rats was improved by mitochondrial transplantation. Likewise, the mitochondrial function of chondrocytes from OA patients was improved by coculture with mitochondria. Furthermore, inflammatory cell death was significantly decreased by coculture with mitochondria. Mitochondrial transplantation ameliorated OA progression, which is caused by mitochondrial dysfunction. These results suggest the therapeutic potential of mitochondrial transplantation for OA.

A Study on the Expression of Glycosaminoglycans in the Experimental Tooth Movement of Rat and in Cultured Periodontal Ligament Cells (실험적 치아이동시 glycosaminoglycan의 발현에 관한 연구)

  • Lee, Kyung-Hwan;Lee, Jong-Jin;Kang, Kyung-hwa;Kim, Eun-Cheol;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.31 no.4 s.87
    • /
    • pp.447-458
    • /
    • 2001
  • The purpose of this study was to evaluate 1) in vivo, the expression of chondroitin 4-sulfate (CH-4S), a structural element of glycosaminoglycans(GAGs), in periodontal tissue during the experimental movement of rat incisors, by labelled streptavidine biotin immunohistochemical staining for CH-4S, 2) In vitro, the expression of CH-4S in cultured human periodontal ligament(PDL) cells supplemented with 10ng/ml of $TGF-{\beta}_1$, 20ng/ml of PDGF-BB, 1ng/ml $TNF-\alpha$, or $1{\mu}g/ml$ LPS by western blot analysis. The results of this study were as follows ; 1. The expression of CH-4S was stronger in pulp, PDL, osteoblasts, osteoclasts and osteocytes in experimental group than in control group, but was rare in dentin, and cementum of experimental groups, regardless of the duration of force application, which was not different from that of control group. 2. In experimental group, the expression of CH-4S in pulp began to increase at 1 day after force application and got to the highest degree at 7 days. After 14 days, the expression in CH-4S immunoreactivity was decreased, and became similar to that of control group at 28 days. 3. The expression of CH-4S in PDL was noted in adjacent to alveolar bone. PDL showed higher intensity of immunolabelling after 1 day of orthodontic tooth movement. And the expression was more stronger in the tension side than that of pressure side of PDL at 1 day, but more stronger in the pressure side than that of tension side of PDL at 4 days. After 7 days, a decrease in CH-4S expression was observed. 4. The expression of CH-4S in alveolar bone got to the highest degree at 4 days, and At 7 days, a decrease in CH-4S expression was observed. 5. PDGF-BB notably raised the expression of CH-4S in the PDL cells at 3 days of cultivation 6. The expression of CH-4S of PDL cells was decreased with the application of $TNF-\alpha$ at 1 day. 7. Admixture of $TGF-{\beta}_1$ and PDGF-BB got more expression of CH-4S in PDL as compared to only $TGF-{\beta}1$ or PDGF-BB. A similar decrease of the expression of CH-4S was observed in the case of application of LPS or $TNF-\alpha$.

  • PDF

EFFECT OF ENAMEL MATRIX DERIVATIVE (EMD, $EMDOGAIN^{(R)}$) ON THE DIFFERENTIATION OF CULTURED HUMAN PERIODONTAL LIGAMENT CELLS AND MESENCHYMAL STEM CELLS (배양된 사람 치주인대세포와 골수유래간엽줄기세포의 분화에 미치는 법랑기질유도체 (Enamel Matrix Derivative, EMD)의 영향)

  • Park, Sang-Gyu;Jue, Seong-Suk;Kwon, Yong-Dae;Choi, Byung-Joon;Kim, Young-Ran;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • Introduction: Enamel matrix derivative (EMD) is a protein which is secreted by Hertwig root sheath and plays a major role in the formation of cementum and attachment of peridontium. Several studies have shown that EMD promoted the proliferation and differentiation of preosteoblasts, osteoblasts and periodontal ligament cells in vitro: however, reports showing the inhibition of osteogenic differentiation by EMD also existed. This study was designed to simultaneously evaluate the effect of EMD on the two cell lines (human mesenchymal stem cells: hMSC, human periodontal ligament derived fibroblasts: hPDLCs) by means of quantitative analysis of some bone related matrices (Alkaline phosphatase : ALP, osteopontin ; OPN, osteocalcin ; OC). Materials and Methods: hMSCs and hPDLCs were expanded and cells in the 4${\sim}$6 passages were adopted to use. hMSc and hPDLCs were cultured during 1,2,7, and 14 days with 0, 50 and 100 ${\mu}g/ml$ of EMD, respectively. ALP activity was assessed by SensoLyte ALP kit and expressed as values of the relative optical density. Among the matrix proteins of the bony tissue, OC and OPN were assessed and quantification of these proteins was evaluated by means of human OC immunoassay kit and human OPN assay kit, respectively. Results: ALP activity maintained without EMD at $1,2^{nd}$ day. The activity increased at $7^{th}$ day but decreased at $14^{th}$ day. EMD increased the activity at $14^{th}$ day in the hPDLCs culture. In the hMSCs, rapid decrease was noted in $7^{th}$ and $14^{th}$ days without regard to EMD concentrations. Regarding the OPN synthesis in hPDLCs, marked decrease of OPN was noted after EMD application. Gradual decrease tendency of OPN was shown over time. In hMSCs, marked decrease of OPN was also noted after EMD application. Overall concentration of OPN was relatively consistent over time than that in hPDLCs. Regarding the OC synthesis, in both of hPDLCs and hMSCs, inhibition of OC formation was noted after EMD application in the early stages but EMD exerted minimal effect at the later stages. Conclusion: In this experimental condition, EMD seemed to play an inhibitory role during the differentiation of hMSCs and hPDLCs in the context of OC and OPN formation. In the periodontium, there are many kinds of cells contributing to the regeneration of oral tissue. EMD enhanced ALP activity in hPDLCs rather than in hMSCs and this may imply that EMD has a positive effect on the differentiation of cementoblasts compared with the effect on hMSCs. The result of our research was consistent with recent studies in which the authors showed the inhibitory effect of EMD in terms of the differentiation of mineral colony forming cells in vitro. This in vitro study may not stand for all the charateristics of EMD; thus, further studies involving many other bone matrices and cellular attachment will be necessary.

Effect of 2-D DBP/PLGA Hybrid Films on Attachment and Proliferation of Intervertebral Disc Cells (2차원적 DBP/PLGA 하이브리드 필름이 디스크 세포의 부착과 증식에 미치는 영향)

  • Ko, Youn-Kyung;Jeong, Jae-Soo;Kim, Soon-Hee;Lim, Ji-Ye;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • Because demineralized bone particle (DBP) contains various bioactive molecules such as cytokines, it is widely used biomaterials in the field of tissue engineering. In this study, we investigated the effect of 2-dimensional DBP/PLGA hybrid films on adhesion, proliferation and phenotype maintenance of intervertebral disc cells. PLGA films incorporated with different amount (0, 10, 20, 40 and 80 wt%) of DBP were prepared by the solvent evaporation method and characterized by scanning election microscopy (SEM). PLGA film has a flat and smooth surface. According to the increase of content of DBP, the surface of DBP/PLGA film exhibited few agglomerates and increased the roughness of the surface. Annulus fibrosus (AF) and nucleus pulposus (NP) cells were cultured on PLGA and DBP/PLGA film surface, and then examined the cell adhesion and proliferation by the cell count and SEM observation. The result of cell count and SEM observation revealed that 10 and 20% DBP in DBP/PLGA films were superior to adhesion and proliferation of both AF and NP cells. We confirmed that specific gene expression of disc cells on DBP/PLGA film based on the cell count result. Disc cells seeded on 20% DBP/PLGA film expressed the gene of type I and II collagen continuously. Therefore, pertinent content of biomaterials could provide more appropriate condition on adhesion and proliferation of cell. And this results may be used as a basic data for the intervertebral disc regeneration using tissue engineering.

The effect of Ca-P coatings of anodized implant surface on response of osteoblast-like cells in vitro (임플란트 표면의 Ca-P 코팅 방법이 MG63 골모유사세포 반응에 미치는 영향에 대한 in vitro 연구)

  • Kim, Il-Yeon;Jung, Sung-Min;Hwang, Soon-Jung;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.376-384
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the response of osteoblast-like cells to Ca-P coated surface obtained via Ion beam-assisted deposition (IBAD) method and Sol-Gel process on anodized surface by cellular proliferation and differentiation. Material and methods: The surface of a commercially pure titanium (Grade IV) discs with dimension of 10mm diameter and 2 mm thickness was modified by anodic oxidation under a constant voltage of 300 V. The experimental groups were coated with Ca-P by the IBAD method and Sol-Gel process on anodized surface. The surface roughness (Ra) of specimens was measured by optical interferometer and each surface was examined by SEM. To evaluate cell response, MG63 cells were cultured and cell proliferation, ALP activity and the ability of cell differentiation were examined. Also, cell morphology was examined by SEM. The significant of each group was verified by Kruskal-Wallis Test ($\alpha$=.05). Results: The Ra value of Ca-P coated surface by IBAD method was significantly higher than Ca-P coated surface by Sol-gel process (P < .05). The level of cell proliferation and ALP activity was higher in Ca-P coated surface by IBAD method (P<.05). The expression of ALP showed higher level expression in Ca-P coated surface by IBAD method. Cells grown on Ca-P coated surface by IBAD method were uniformly distributed and developed a very close layer. Conclusion: These experiments showed better performances of Ca-P coated surface by IBAD method with respect to Ca-P coated surface by Sol-gel process. Ca-P coated surface by IBAD method appear to give rise more mature osteoblast characteristics and might result in increased bone growth and bone-implant contact.

CELLULAR RESPONSES ON ANODIZED TITANIUM DISCS COATED WITH $1{\alpha}$,25-DIHYDROXYVITAMIN D3 INCORPORATED POLY (D,L-LACTIDE-CO-GLYCOLIDE) (PLGA) NANOPARTICLES

  • Cho, Young-Jin;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.620-627
    • /
    • 2008
  • STATEMENT OF PROBLEM: A biochemical approach for surface modification has offered an alternative for physicochemical and morphological methods to obtain desirable bone-implant interfaces. PURPOSE: The purpose of the present study was to investigate cell responses to poly (D,L-lactide-co-glycolide) (PLGA)/$1{\alpha}$,25-(OH)$_2D_3$ coating with reference to cellular proliferation and differentiation in vitro. MATERIAL AND METHODS: 96 titanium discs were fabricated and divided into four groups. Group 1 was anodized under 300 V as control. Group 2, 3 and 4 were anodized then coated with 3 ml PLGA/$1{\alpha}$,25-(OH)$_2D_3$ solutions. Amount of the solutions were 2 ul, 20 ul and 200ul respectively. The osteoblast-like Human Osteogenic Sarcoma (HOS) cells were seeded and cultured for 1, 3 and 7 days. MTSbased cell proliferation assay and ALPase activity test were carried out. RESULTS: PLGA nanoparticles were observed as fine, smooth and round and HOS cells attached to the anodized surfaces through strand-like and sheet-like filopodia. After 3 days of culture, the dendritic filopodia were exaggerated and sheet-like cytoplasmic projections covered the coated titanium surfaces. After 3 days of culture, all of the groups showed increased cellular proliferation and the lowest proliferation rate was measured on group 2. Higher amount of incorporated $1{\alpha}$,25-(OH)$_2D_3$ (Group 3 and 4) improved cellular proliferation but the differences were not significant statistically (P > .05). But they increased the rate of ALP activities than the control group at day 3 (P < .05). CONCLUSION: Biodegradable PLGA nanoparticles incorporated with vitamin D metabolite positively affected proliferation and differentiation of cells on the anodized titanium surface.

Gene Expression of Exposure to Mineral Trioxide Aggregate(MTA) on Dental Pulp Cells (Mineral Trioxide Aggregate(MTA)에 의한 치수세포의 유전자 발현변화)

  • Choi, Yu-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.30-38
    • /
    • 2008
  • Dental pulp cells are assumed to possess the capacity to elaborate both bone and dentin matrix under the pathological conditions following tooth injury. The purpose of this study is to examine the effects of mineral trioxide aggregate (MTA) on various gene expression regarding dentinogenesis and cell viability assay in cultured primary human dental pulp cells. The author also examined the effects of this material on cellular alkaline phosphatase activity as a potential indicator of dentinogenesis. For gene expression on MTA, reverse transcriptase polymerase chain reaction was performed using primer sets of glyceraldehyde-3-phosphate dehydrogenase, type I collagen, alkaline phosphatase(ALP), osteonectin, and dentin sialoprotein after 2 and 4 days. Cell viability assay showed that the proportion of MTA-treated pulp cells which had been exposed for 5 days to MTA was higher than that of the control cells. Among the genes investigated in this study, ALP and osteonectin(SPARC) were increased in MTA treated group than in control. These findings suggest that this dental pulp culture system may be useful in the future as a model for studying the mechanisms underlying dentin regeneration after the treatment with MTA. Exposure to MTA material would not induce cytotoxic response in the dental pulp cells. In addition, MTA could influence the behavior of human pulp cells by increasing the ALP activity and SPARC synthesis.

  • PDF

The Effect of Nicotine on the Proliferation and Differentiation of Normal Human Osteoblast at the Surface of Implants (임플란트 표면에서 배양된 정상인 조골세포의 증식 및 분화에 미치는 니코틴의 영향)

  • Ahn, Tae Woong;Lee, Chong Heon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.5
    • /
    • pp.111-118
    • /
    • 2018
  • Nicotine of tobacco component has a controversial impact in the clinical outcome of dental implants. Although numerous nicotine effects on bone healing around implants have been presented, it is rarely reported in vitro study about normal human osteoblast(NHost) from oral and maxillofacial area at the surface of implants. The purpose of the present study was to evaluate the effect of nicotine on the proliferation and differentiation response of NHost to plasmatic and salivary levels of nicotine reported in smokers at the surface of screw-type plasma-sprayed titanium implants. NHosts were seeded on the surface of titanium implants and cultured for 21 days in ${\alpha}-MEM$ supplemented with 10% FBS, 50mg/ml ascorbic acid, 5mM ${\beta}$-glycerophosphate and 100nM dexamethasone. Seeded implants were exposed to various nicotine concentration(0.05-0.5mg/ml) from 1 to 21 days, and characterized for cell morphology, proliferation, differentiation, alkaline phosphatase(ALP) activity and ionized calcium concentration(Cai) of medium. Continuous exposure to higher nicotine concentration(above 0.3mg/ml) induced a dose- and time-dependent vacuolation of the cytoplasm, and a tendency to detach from the implant surface. 0.05mg/ml(lower nicotine concentration) did not cause significant effects in the cell proliferation and ALP activity. 0.1-0.2mg/ml caused evident dose-dependent effects in increased cell proliferation, ALP activity and earlier onset of matrix mineralization at levels up to 0.2mg/ml, while a dose-dependent inhibitory effect at 0.3-0.5mg/ml. Cai concentration of control group was decreased at 14 days. Increased Cai concentration at 0.1-0.2mg/ml, decreased Cai concentration at 0.3mg/ml and no change at 0.5mg/ml during the culture period were seen. It suggested that nicotine concentration could paly an role in modulating NHost activity as a contributing factor associated with proliferation and differentiation of NHost at the surface of implants.