• Title/Summary/Keyword: Culture broth

Search Result 1,215, Processing Time 0.027 seconds

Biological Control of Root-Knot Nematodes by Organic Acid-Producing Lactobacillus brevis WiKim0069 Isolated from Kimchi

  • Seo, Hye Jeong;Park, Ae Ran;Kim, Seulbi;Yeon, Jehyeong;Yu, Nan Hee;Ha, Sanghyun;Chang, Ji Yoon;Park, Hae Woong;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.662-673
    • /
    • 2019
  • Root-knot nematodes (RKNs) are among the most destructive plant-parasites worldwide, and RKN control has been attempted mainly using chemical nematicides. However, these chemical nematicides have negative effects on humans and the environment, thus necessitating the search for eco-friendly alternative RKN control methods. Here, we screened nematicidal lactic acid bacteria (LAB) isolated from kimchi and evaluated their efficacy as biocontrol agents against RKNs. Of 237 bacterial strains, Lactobacillus brevis WiKim0069 showed the strongest nematicidal activity against the second-stage juveniles (J2) of Meloidogyne incognita, M. arenaria, and M. hapla and inhibited the egg hatch of M. incognita. The culture filtrate of WiKim0069 had a pH of 4.2 and contained acetic acid (11,190 ㎍/ml), lactic acid (7,790 ㎍/ml), malic acid (470 ㎍/ml), and succinic acid (660 ㎍/ml). An artificial mixture of the four organic acids produced by WiKim0069 also induced 98% M. incognita J2 mortality at a concentration of 1.25%, indicating that its nematicidal activity was derived mainly from the four organic acids. Application of WiKim0069 culture filtrate suppressed the formation of galls and egg masses on tomato roots by M. incognita in a dose-dependent manner in a pot experiment. The fermentation broth of WiKim0069 also reduced gall formation on melon under field conditions, with a higher efficacy (62.8%) than that of fosthiazate (32.8%). This study is the first report to identify the effectiveness of kimchi LAB against RKNs and to demonstrate that the organic acids produced by LAB can be used for the RKN management.

Surface Display of Bacillus CGTase on the Cell of Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Bacillus CGTase의 표층발현)

  • Kim Hyun-Chul;Lim Chae-Kwon;Kim Byung-Woo;Jeon Sung-Jong;Nam Soo-Wan
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.118-123
    • /
    • 2005
  • For the expression in Saccharomyces cerevisiae, Bacillus stearothermophilus cyclodextrin glucano­transferase gene (cgtS) in pCGTS (4.8 kb) was subcloned into the surface expression vector, pYD1 (GALl promoter). The constructed plasmid, pYDCGT (7.2 kb) was introduced into S. cerevisiae EBY100 cells, and then yeast transformants were selected on the synthetic defined media lacking tryptophan. The formation of cyclodextrin (CD) was confirmed with active staining of culture broth of transformant grown on starch medium. Enzymatic reaction products with respect to the culture time and the reaction time were examined by TLC analysis. The results indicated that the enzyme activity was exhibited after 12 h cultivation and CD was produced after 10min of enzymatic reaction. When the surface-engineered yeast cells were cultured on galactose medium, maximum activities of CGTase were about 21.3 unit/l and 16.5 unit/l at $25^{\circ}C\;and\;30^{\circ}C$, respectively. The plasmids stability showed about $80\%\;even\;at\;25^{\circ}C\;and\;30^{\circ}C$.

Rapid detection of shiga-toxin producing E. coli by bacteriophage amplification assay (박테리오파지 증폭 기법을 활용한 시가 독소 생성 병원성 대장균의 신속 검출)

  • Baek, Da-Yun;Park, Jong-Hyun;Cho, Seok-Cheol;Lee, Young-Duck
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.103-108
    • /
    • 2020
  • Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacteria and can cause severe foodborne disease. For STEC detection, conventional culture methods have disadvantages in the fact that conventional culture takes a long time to detect and PCR can also detect dead bacteria. To overcome these problems, we suggest a bacteriophage amplification assay, which utilizes the ability of bacteriophages to infect living cells and their high specificity. We used a combination of six bacteriophages infecting E. coli to make the bacteriophage cocktail and added ferrous ammonium sulfate as a virucidal agent to remove free-bacteriophages. When cherry tomato and paprika were artificially inoculated with the cocktail at a final concentration of around 3 log CFU/mL and were enriched for at least 5 h in mTSB broth with Novobiocin, approximately 2-3 log PFU/mL were detected through the bacteriophage amplification assay. Therefore, bacteriophage amplification assay might be convenient and a useful method to detect STEC in a short period of time.

Isolation and Characterization of an Antagonistic Endophytic Bacterium Bacillus velezensis CB3 the Control of Citrus Green Mold Pathogen Penicillium digitatum (감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명)

  • Lee, Ji-Hyun;Seo, Mun-Won;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2012
  • In order to develop environment friendly fungicide for the control of citrus green mold (Penicillium digitatum) using endophytic bacteria, the 21 bacterial isolates were isolated from citrus leaves in seven different orchards in Jeju Province. Among the 21 bacterial isolates, 5 bacterial isolates presented antifungal activity against green mold pathogen P. digitatum. The CB3 isolate, which showed the most strong antagonistic effect, was selected through opposite culture against the pathogen. The rod-shaped, gram-positive bacterium CB3 was identified as Bacillus velezensis based on morphological, physiological characteristics, 16S rDNA, and gyr A gene sequence analysis. The isolate CB3 showed strong antifungal activity against two citrus postharvest pathogen P. digitatum. Citrus fruits were treated by wound inoculation with P. digitatum pathogen, and the control efficacy of CB3 culture broth was 66.7% ($1{\times}10^8$ cfu/ml). In conclusion, The stability of CB3 and its strong antifungal activity also lead us to believe that it has potential for application as an environment friendly biological control agent.

Decolorization of Synthetic Dyes and Ligninolytic Enzymes Production by White Rot Fungi (백색부후균에 의한 합성염료의 탈색과 리그닌분해 효소의 생산)

  • Gu, Bon-Joon;Kim, Min-Sik;Kim, Yin-Man;Kim, Seon-Woong;Choi, Won-Hyeok;Lee, Mi-Hwa;Cho, Hae-Jin;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • This study has been conducted to screen the decolorization of 4 aromatic synthetic dyes and production of ligninolytic enzymes by 4 white rot fungi such as Bjerkanderia adusta, Cerrena unicolor, Pleurotus pulmonarius and Abortiporus biennis. It was found that B. adusta, C. unicolor, and P. pulmonarius have the ability to efficiently decolorize congo red and moderately decolorized amaranth and orange G in solid and liquid culture media. However, the decolorization rate of 4 synthetic dyes by A. biennis was relatively low. The decolorization of congo red, amaranth, orange G were related to the growth rate of the fungal mycelia in the solid medium. But, the all fungi tested did not efficiently decolorize methylene blue in the liquid culture media. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in 1% naphthalene supplemented potato dextrose broth medium. All fungi tested had the capability to produce laccase, lignin peroxidase and manganese peroxidase, and B. adusta was the best ligninolytic enzymes producing white rot fungus among other fungi tested.

Optimal Culture Conditions for Penicillium rubefaciens NNIBRFG5039 Possessing Antimicrobial Activity (항균활성 보유 Penicillium rubefaciens NNIBRFG5039의 최적배양 조건)

  • Hwang, Hye Jin;Mun, Hye Yeon;Hwang, Buyng Su;Nam, Young Ho;Chung, Eu Jin
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • In screening for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) KCCM 40510 and Bacillus cereus KCTC 3624, NNIBRFG5039 was isolated from the air in Sangju-si, Gyeongsangbuk-do. Based on a high sequence similarity of the internal transcribed spacer (ITS) region, NNIBRFG5039 was determined to be closely related to Penicillium rubefaciens CBS 139145. The optimal media, initial pH, and temperature for mycelial growth and antimicrobial activity of P. rubefaciens NNIBRFG5039 were determined as follows: potato dextrose broth (PDB), pH 6.5, and 30℃, respectively. Under the optimal culture conditions, maximum mycelial growth (12.4 g L-1) and antibacterial activity (7.5 mm zone of inhibition against MRSA KCCM 40510, and 5.0 mm zone of inhibition against B. cereus KCTC 3624) were observed in a 5 L stirred-tank fermenter. We also isolated the antimicrobial compound from an ethyl acetate fraction, and its chemical structure was identified as (S)-6-hydroxymellein (1) by ESI-MS, 1H-NMR, and 13C-NMR. Consequently, the extract from P. rubefaciens NNIBRFG5039 may be used in functional materials for antimicrobial-related applications.

Identification of Alkalophilic Bacillus sp. S-1013 Producing Non-Cariogenicity Sugar Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc and Optimization of Culture Condition for Its Production (비우식성 당 Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc를 생산하는 호알칼리성 Bacillus sp. S-1013의 동정 및 생산조건의 최적화)

  • Ryu Il-Hwan;Kim Sun-Sook;Lee Kap-Sang;Lee Eun-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.235-243
    • /
    • 2006
  • The study was performed to identification of producing microbe Non-Cariogenicity Sugar (NCS; Fuc($1{\to}4$) gaINAc($2{\to}6$)NeuAc) with anti-caries activity, and to optimization of production condition. A typical strain which produced the NCS was identified alkalophilic Bacillus sp. S-1013 through the results of morphological, biochemical and chemotaxonomic characteristics and 16S rDNA sequencing. The optimal medium composition for the maximal production of the NCS from alkalophilic Bacillus sp. S-1013 was as follow: soluble starch 30 g, dextrin 15 g, yeast extract 5 g, peptone 10 g, $K_{2}HPO_4$ 2 g in a liter of distilled water. Optimal temperature and pH were 25 and 11.0, respectively. The highest production of NCS was shown 60 hrs cultivation using the optimal medium, and then NCS productivity and dry cell weight of culture broth increased 4.24 and 2.67 time than initial medium, respectively.

Studies on Cultural Characteristics Pestalotiopsis theae causing Leaf Blight on Oriental Persimmon Tree (단감나무 둥근갈색무뉘병원균 Pestalotiopsis theae의 배양적 특성)

  • Chang, Tae-Hyun;Lim, Tae-Heon;Chung, Bong-Koo;Kim, Byung-Sup
    • Korean Journal Plant Pathology
    • /
    • v.13 no.4
    • /
    • pp.232-238
    • /
    • 1997
  • Culture conditions affecting mycelial growth and sporulation of P. theae, SP2, SP3 and P. longiseta which causing leaf blight on oriental persimmon leaf blight have been investigated. The optimum temperature for the mycelial growth and sporulation on potato dextrose agar was $25{\sim}30^{\circ}C$ in all the fungi, but was inhibited and finally arrested at 10 and $30^{\circ}C$. The optimum pH for mycelial growth and sporulation were ranged at pH 4.5~5.0 and 5.0~6.0 in all the fungi. Lenonian agar, potato sucrose agar and oatmeal medium were good culture media for the mycelial growth and sporulation of all the fungi. The effective sources of nitrogen and carbon for the mycelial growth were tryptone, glycine, starch, dextrose, galactose and lactose. Glutamic acid, peptone and tryptone were good nitrogen sources for sporulation of the fungi. Sucrose, starch and galactose were also good carbon sources for sporulation. Generally, vitamins had no effect on mycelial growth and sporulation. The pH of the potato dextrose broth inoculated with SP2, SP3 and P. theae and P. longiseta was changed from 7.0 to 4.5~4.7 and 5.0~5.4 after incubating for 10 days, respectively. But, the initial pH of the medium adjusted to 5.0 was lowered to 4.5~4.7 after incubating for 10 days.

  • PDF

The Optimal Condition and Enzyme Activity of Entomopathogenic Fungus Beauveria bassiana Using Extracted Rice Bran (미강추출물을 이용한 곤충병원성 곰팡이 Beauveria bassiana의 최적 배양조건 및 효소활성)

  • Kim, Chang-Su;Lee, Jung-Bok;Kim, Beam-Soo;Lee, Min-Hye;Kang, Kyeong-Muk;Joo, Woo-Hong;Kim, Jin-Won;Im, Dae-Joon;Kwon, Gi-Seok
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1010-1018
    • /
    • 2013
  • The greenhouse whitefly, Bemisia tabaci, is considered one of the most destructive pests of crops. In this study, we aimed to determine the optimal liquid culture conditions in shake flasks for maximal sporulation of Beauveria bassiana M130 using rice bran. The optimal initial pH for the spore production of B. bassiana using extracted rice bran medium was 5.2 and $28^{\circ}C$. The screening in shake flasks of carbon and nitrogen sources resulted in the identification of an optimal medium based on 0.5% $(NH_4)_2SO_4$, with extracted rice bran 8:1. Using this medium, a production level of $2.15{\times}10^9$ spores per ml was obtained after six days from culture inoculation at $28^{\circ}C$ in a rotary shaking incubator at 130 rpm. In addition, the specific activities of extracellular enzymes of chitinase and protease were $4,296{\mu}mol$ and $375{\mu}mol$, respectively. These results suggest that Beauveria bassiana M130 could be a bio-controller for the greenhouse whitefly.

Yeast Production from Soybean Curd Waste Water (두부 폐수를 이용(利用)한 효모(酵母) 배양(培養))

  • Chung, Ki-Taek;Song, Hyoung-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.91-100
    • /
    • 1981
  • As a primary study for SCP production from soybean curd waste water, selection of yeast and optimum cultivation condition of selected yeast on soybean curd waste water were investigated. Eighteen strains of the genus Candida and Saccharamyces were tested to compare their abilities to grow on soybean curd waste water. Candida utilis YUFE 1508 and Candida guilliermondii KFCC 35120 grew most successfully. Optimum pH and optimum temperature of the basal medium for growth of the two strains were $6.0{\sim}6.5$ and $25^{\circ}C$, respectively. The optimum culture medium of the two yeasts was soybean curd waste water supplemented with molasses 2.5% (as total sugar), ammonium acetate 0.1-0.3% (as nitrogen), $KH_2PO_4$ 0.1-0.2% (as phosphorus), and $K_2HPO_4$ 0.05% (as phosphorus). But yeast growth was not affected by metal salts. Under the optimum cultivation condition, the maximum cell weights of Candida utilis YUFE 1508 and Candida guillfermondii KFCC 35120 were 1.313g and 1.322g/100ml of culture broth respectively after 48 hr of cultivation. The cell yields of Candida utilis YUFE 1508 and Candida guilliermondii KFCC 35120 were 68.4% and 74.2%, respectively, based on utilized sugar. On the other hand, crude protein of dry yeast produced by Candida utilis YUFE 1508 and Candida guilliermondii KFCC 35120 under optimum condition was 54.0% and 56.8%, respectively.

  • PDF