Identification of Alkalophilic Bacillus sp. S-1013 Producing Non-Cariogenicity Sugar Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc and Optimization of Culture Condition for Its Production

비우식성 당 Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc를 생산하는 호알칼리성 Bacillus sp. S-1013의 동정 및 생산조건의 최적화

  • Ryu Il-Hwan (College of Life Science and Natural Resources, Wonkwang University) ;
  • Kim Sun-Sook (Department of Dental Hygienic, Suwon Wonen's College) ;
  • Lee Kap-Sang (College of Life Science and natural Resources, Wonkwang University) ;
  • Lee Eun-Sook (Department of Dental Hygienic, Gimcheon College)
  • 류일환 (원광대학교 생명자원과학대학 식품환경학부) ;
  • 김선숙 (수원여자대학 치위생과) ;
  • 이갑상 (원광대학교 생명자원과학대학 식품환경학부) ;
  • 이은숙 (김천대학 치위생과)
  • Published : 2006.09.01

Abstract

The study was performed to identification of producing microbe Non-Cariogenicity Sugar (NCS; Fuc($1{\to}4$) gaINAc($2{\to}6$)NeuAc) with anti-caries activity, and to optimization of production condition. A typical strain which produced the NCS was identified alkalophilic Bacillus sp. S-1013 through the results of morphological, biochemical and chemotaxonomic characteristics and 16S rDNA sequencing. The optimal medium composition for the maximal production of the NCS from alkalophilic Bacillus sp. S-1013 was as follow: soluble starch 30 g, dextrin 15 g, yeast extract 5 g, peptone 10 g, $K_{2}HPO_4$ 2 g in a liter of distilled water. Optimal temperature and pH were 25 and 11.0, respectively. The highest production of NCS was shown 60 hrs cultivation using the optimal medium, and then NCS productivity and dry cell weight of culture broth increased 4.24 and 2.67 time than initial medium, respectively.

비우식성 당 NCS(Fuc($1{\to}4$)galNAc($2{\to}6$)NeuAc)를 생산하는 미생물을 동정하고 이 미생물이 생산하는 비우식성 당의 생산조건을 최적화하기 위하여 본 연구를 수행하였다. NCS를 생산하는 균주는 형태학적, 생화학적, 화학분류학적 특성 및 16S-rRNA 염기서열 결정을 통하여 Bacillus sp. S-1013로 동정되었다. 또한, 이 균주에 의한 NCS의 최적 배지조성은 soluble starch 3.0%, dextrin 1.5%, yeast extract 0.5%, pepton 1.0%, $K_{2}HPO_4$ 0.2%였으며, 최적온도 및 pH는 각각 25와 11.0이였다. 최적배지에서 NCS 및 균체의 생산은 기본배지에 비해 각각 4.24배 및 2.67배 증가하였다.

Keywords

References

  1. Ahn, S.K., H.Y. Suh, C.H. Lee, H.M. Oh, G.S. Kwon, D.H. Yi and B.D. Yoon. 1994. Production and Rheological properties of the polysaccharide from Bacillus sp. A29. Kor. J. Appl. Microbiol. Biotechnol. 22: 175-181
  2. Bochner, B.R., P. Gadzinski and E. Panomitros. 2001. Phenotype microarrays for high-throughout put phenotypic test and assay of gene function. Genome Res. 11: 1246-1255 https://doi.org/10.1101/gr.186501
  3. Bochner, B.R. 1989. New method aid microbial identification. Breathprints at the microbial level. ASM News 55: 536-239
  4. Bochner, B.R. 1989. New method aid microbial identification. Sleuthing out bacterial identities. Nature 339: 157-158 https://doi.org/10.1038/339157a0
  5. Chun, J.Y., I.H. Ryu, S.U. Lee and K.S. Lee. 2000. Production condition, purification and properties of anticaries microbial agent by Bacillus alcaliphilshaggy JY-827. Kor. J. Appl. Microbiol. Biotechnol. 28: 270-278
  6. Clejan, S., T.A. Krulwich, K.R. Mondrus and D. Setoyoung. 1986. Membrane lipid composition of obligately and facultatively alkalophilic strain of Bacillus sp. J. Bacteriol. 168: 334-340
  7. De Jong, M.H., J.S. van der Hoeven and J.H. van Os. 1986. Growth of microorganisms from supraginginal dental plaque on saliva agar. J. Dent. Res. 65: 85-88
  8. Gerhardt, P., R.G.E. Murray, R.N. Costilow, E.W. Nester, W.A. Wood, N.R. Krieg and G.B. Phillips. 1984. Manual of methods for general bacteriology. pp.20-160. American Society for Microbiology, Washington, U.S.A
  9. Grenby, T.H. 1987. Reseach on lactitol and dental health: a review, Grenby T.H, editor. Developments in sweeteners-3, Amsterdam: Elsevier, pp. 331-362
  10. Hamada, S. and H.D. Slace. 1980. Biology, immunology, and cariogenicity of S. mutans. Microbiol. Rev. 44: 331-334
  11. Havenaar, R. 1987. Dental advantages of some bulk sweeteners in laboratory animal triala. p. 189-211. In T.H. Grenby, (ed.), Develements in sweeteners-3. Amsterdam, Elsevier
  12. Komagata, K. and K.I. Suzuki. 1987. In Method in Microbiology 19: pp. 161-207. Acadeic press
  13. Komagata, K. and K.I. Suzuki. 1983. Taxonomic signification of cellular fatty acid composition in some coryneform bacteria. I.J.S.B. 33: 188-200
  14. Leach S.A and T.H. Melville. 1970. Investigation of some human oral organisms capable of releasing the carbohydrates from salivary glycoproteins. Arch. Oral Biol. 15: 87-88 https://doi.org/10.1016/0003-9969(70)90147-0
  15. Lee, J.S., K.C. Lee, Y.H. Chang, S G. Hong, H.W. Oh, Y.R. Pyun and K.S. Bae. 2002. Paenibacillus daejeonensis sp. nov., a novel alkaliphilic bacterium from soil. Int. J. Syst. Bacteriol. 52: 2110-2123
  16. Lee, M.Y., M.J. Chung, S.Y. Lee, T.S. Kang, U.S. Lee and Y.S. Min. 1995. Optimum production of oligosaccharide by Bacillus cereus IAM 1072. J. Kor. Soc. Food Nutr. 24: 771-778
  17. Lee, E.Y., C.W. Lee and K. Kim. 1996. production by microorganism of N-acetyl chitooligomer $[GlcNAc,(GlcNAc)_{2}]$. Theor. Appl. Chem. Eng. 2: 437-440
  18. Linke H.A.B. 1987. Sweeteners and dental health: the influence of sugar substitues on oral microorganisms. p. 151-188. T.H. Grenby (ed.), Developments in sweeteners-3. Amsterdam, Elsevier
  19. Loesche, W.J. 1986. Role of S. mutans in human dental decay. Miocrobiol. Rev. 50: 353-80
  20. Miller, L.A. 1983. Single derivatization Method for bacterial fatty acid Methyl ester. including hydroxy acid. J. Clin. Microbiol. 16: 584-586
  21. Moynihan, P.J. 1998. Update on the nomenclature of arbohydrate and their dental effect. J. Dentistry 26: 209-218 https://doi.org/10.1016/S0300-5712(97)00010-9
  22. Nakamura, L.K. 1991. Bacillus brevis Migula 1900 taxonomy: re-association and base composition of DNA. Int. J. Syst. Bacteriol. 41: 510-515
  23. Nakamura, L.K. 1993. DNA relatedness of Bacillus brevis Migula 1900 strains and proposal of Bacillus agri sp. nov., nom. rev., and Bacillus centrosporus sp. nov. Int. J. Syst. Bacteriol. 43: 20-25
  24. Neta, T., K. Takada and M. Hirasawa. 2000. Low-cariogencity of trehalose as a substate. J. Dentiatry 28: 517-576
  25. Peter, H.A.S., S.M. Nicholas, M.E. Shape and J.G. Holt. 1986. Bergey's manual of systemic bacteriology. Vol II, pp. 1104-1139
  26. Petronella, J.L., C.B. Ingeborg, K. Michiel and H. Jeroen. 1999. Regulation of exopolysaccharide production by Lactococcus lastis subsp. cremoris by the sugar source. Appl. Environ. Microbiol. 65: 5003-5008
  27. Ryu, I.H., S.S. Kim and K.S. Lee. 2003. Purification and Properties of Non-Cariogenicity Sugar produced by Alkalophilic Bacillus sp. S-1013. J. Microbiol. Biotechnol. 14: 751-758
  28. Ryu, I.H., S.S. Kim and K.S. Lee. 2003. Anti-Cariogenicity of NCS(Non-Cariogenicity Sugar) produced by Alkalophilic Bacillus sp. S-1013. J. Microbiol. Biotechnol. 14: 759-765
  29. Russell, R.R.B., J. Aduse-Opoku, I.C. Sutcliffe, A.L. Tao and J.J. Ferretu. 1992. A binding protein dependent transport system in S. mutans responsible for multiple sugar metabolism. J. Biol. Chem. 267: 4631-4637
  30. Saitou, N. and M. Nei. 1987. The neighbor-joining method; a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  31. Salako, N.O. and I. Kleinberg. 1992. Comparison of the effect of galactose and glucose on the pH responses of human dental plaqlue, salvary sediment and pure cultures of oral bacteria. Arch. Oral Biol. 37: 821-829 https://doi.org/10.1016/0003-9969(92)90116-P
  32. Shida, O., H. Takagi, K. Kadowaki and K. Komagata. 1996. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 46: 939-946
  33. Tao. L., I.C. Sutcliffe, R.R.B. Russell and, J.J. Ferretti. 1993. Cloning and expression of the multiple sugar metabolism (msm) operon of S. mutans in heterologous streptococcal hots. Infec. Immu. 61: 1121-1125