• Title/Summary/Keyword: Culture broth

Search Result 1,215, Processing Time 0.023 seconds

Synergistic effect of xylitol and ursolic acid combination on oral biofilms

  • Zou, Yunyun;Lee, Yoon;Huh, Jinyoung;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.288-295
    • /
    • 2014
  • Objectives: This study was designed to evaluate the synergistic antibacterial effect of xylitol and ursolic acid (UA) against oral biofilms in vitro. Materials and Methods: S. mutans UA 159 (wild type), S. mutans KCOM 1207, KCOM 1128 and S. sobrinus ATCC 33478 were used. The susceptibility of S. mutans to UA and xylitol was evaluated using a broth microdilution method. Based on the results, combined susceptibility was evaluated using optimal inhibitory combinations (OIC), optimal bactericidal combinations (OBC), and fractional inhibitory concentrations (FIC). The anti-biofilm activity of xylitol and UA on Streptococcus spp. was evaluated by growing cells in 24-well polystyrene microtiter plates for the biofilm assay. Significant mean differences among experimental groups were determined by Fisher's Least Significant Difference (p < 0.05). Results: The synergistic interactions between xylitol and UA were observed against all tested strains, showing the FICs < 1. The combined treatment of xylitol and UA inhibited the biofilm formation significantly and also prevented pH decline to critical value of 5.5 effectively. The biofilm disassembly was substantially influenced by different age of biofilm when exposed to the combined treatment of xylitol and UA. Comparing to the single strain, relatively higher concentration of xylitol and UA was needed for inhibiting and disassembling biofilm formed by a mixed culture of S. mutans 159 and S. sobrinus 33478. Conclusions: This study demonstrated that xylitol and UA, synergistic inhibitors, can be a potential agent for enhancing the antimicrobial and anti-biofilm efficacy against S. mutans and S. sobrinus in the oral environment.

Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. lactucae and Growth Promotion on Lettuce Using Bacterial Isolates

  • Yadav, Dil Raj;Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1241-1255
    • /
    • 2021
  • This study was carried out to explore a non-chemical strategy for enhancing productivity by employing some antagonistic rhizobacteria. One hundred eighteen bacterial isolates were obtained from the rhizospheric zone of various crop fields of Gangwon-do, Korea, and screened for antifungal activity against Fusarium wilt (Fusarium oxysporum f. sp. lactucae) in lettuce crop under in vitro and in vivo conditions. In broth-based dual culture assay, fourteen bacterial isolates showed significant inhibition of mycelial growth of F. oxysporium f. sp. lactucae. All of the antagonistic isolates were further characterized for the antagonistic traits under in vitro conditions. The isolates were identified on the basis of biochemical characteristics and confirmed at their species level by 16S rRNA gene sequencing analysis. Arthrobacter sulfonivorans, Bacillus siamensis, Bacillus amyloliquefaciens, Pseudomonas proteolytica, four Paenibacillus peoriae strains, and Bacillus subtilis were identified from the biochemical characterization and 16S rRNA gene sequencing analysis. The isolates EN21 and EN23 showed significant decrease in disease severity on lettuce compared to infected control and other bacterial treatments under greenhouse conditions. Two bacterial isolates, EN4 and EN21, were evaluated to assess their disease reduction and growth promotion in lettuce in field conditions. The consortium of EN4 and EN21 showed significant enhancement of growth on lettuce by suppressing disease caused by F. oxysporum f. sp. lactucae respectively. This study clearly indicates that the promising isolates, EN4 (P. proteolytica) and EN21 (Bacillus siamensis), can be commercialized and used as biofertilizer and/or biopesticide for sustainable crop production.

Meat Eating Practice in Korea (한국의 육식문화)

  • Im, Jang-Hyeok
    • Korean Journal of Heritage: History & Science
    • /
    • v.33
    • /
    • pp.274-289
    • /
    • 2000
  • Koryo Dynasty has greatly effected the meat eating practice in Korea. And by focusing on this period, this paper has in vestigated how this practice influenced and effected our meat eating culture. The 'Orders to Prohibit Butchery' written on Koryo's history books were to encourage stockbreeding rather than to follow the Buddhist policy they followed. By encouraging stockbreeding, they wanted to promote the usage of cattle in farming and thus increasing agriculture industry as a whole. Nonetheless, records show that hunting was permitted to a certain degree. And this allowed the civilians to depend their meat supply from hunting and for the fire field farmers to capture wild animals that harmed their crops. Moreover, through 'Kiwujae' (Kiwujae - a shamans service to pray for rain / ritual (praying) for rain.), we could see that earlier part of Karyo's rituals and ceremonies followed the Buddhist tradition while the latter followed the Shamanism tradition. Perhaps this was the result of allowing 'meat' for the service offerings. As Shamanism could be considered as a religion that allowed 'meat', prevalence of Shamanism was promoting meat-eating at mess(after these rituals and ceremonies that offered food (meat inclusive) to their guardian or god, the civilians would dine together.). In relation, this public eating practice slowed down the progress for storage technique. Therefore, meat-eating was developed through public and mass dining rather than through the form of family or private. On this account, we can safely regard meat-eating practice as a 'public event'. On the other hand, the history of castration is not so long in Korea. And the purpose of such practice was to use the stock for farming rather than to yield high quality meat. It is known that Mongol in Koryo period has greatly influenced meat cooking in Korea. And the exemplary dish is the 'tang' (tang - kind of soup. However less creamy, clearer broth and with more ingredients than soup.). However, the tang we ate in everyday life had the same cooking method as the tang we offered for services. Moreover, since we did not use castrated animals for our offering as the Mongolians, we must not have been greatly influenced by them. But if so, perhaps the influences would have been limited to the nobility.

Isolation of 2 Bacillus Strains with Strong Fibrinolytic Activities from Kimchi

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Afifah, Diana Nur;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.439-446
    • /
    • 2020
  • Two Bacillus strains, K3 and K208, both demonstrating strong fibrinolytic activities were isolated from Kimchi, a traditional Korean preparation of fermented vegetables. Isolates were subjected to various molecular biology based identification methods including RAPD-PCR and identified as B. subtilis and B. velezensis, respectively. Tryptic soy broth (TSB) was found to best maintain both the growth and the fibrinolytic activity of these strains. Culture supernatants were analyzed by SDS-PAGE and fibrin zymography, and the results indicate that a 40 and 27 kDa band seem to be responsible for the fibrinolytic activities of these two isolates and the 27 kDa band was subsequently identified as the mature form of AprE, the major fibrinolytic enzyme. Thus the aprE genes were cloned and the translated amino acid sequences demonstrated 99.3% identity with each other, and 86.5% identity with BsfA, a fibrinolytic enzyme from B. subtilis ZA400 also isolated from Kimchi, and AprE2, a fibrinolytic enzyme from B. subtilis CH3-5 isolated from Cheonggukjang, a traditional Korean fermented soy. Given this B. subtilis K3 and B. velezensis K208 may be promising starter cultures in the production of fermented foods.

Microbial Reduction in Kimchi Cabbage Leaves by Washing with Citric Acid and Ethanol (구연산과 에탄올 세척에 의한 배춧잎의 미생물 저감화)

  • Han, Eung Soo;Yang, Ji Hee
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.112-117
    • /
    • 2019
  • The purpose of this study is to develop a method to cultivate lactic acid bacteria (LAB) as a by-product in the fermentation of kimchi through the use of Chinese cabbage leaves. A method to reduce the initial number of microorganisms using citric acid and ethanol to wash cabbage leaves was investigated. In this experiment, Chinese cabbage leaves were washed using a mixture of 3% citric acid and 7% ethanol and the washed cabbage leaves were juiced and used as a sample. The total microorganisms of kimchi cabbage juice (KCJ) was reduced from log 6.53 CFU/g to log 3.69 CFU/g by washing with citric acid and ethanol, and lactic acid bacteria from log 4.40 CFU/g to log 2.01 CFU/g. The salinity of KCJ was appropriate for the growth of lactic acid bacteria but the pH was too low. The yield of washing, juice extraction, and total were 80.82%, 79.32%, and 64.11%, respectively. KCJ made by washing with citric acid and ethanol was good for the culture broth of lactic acid bacteria.

LuxR-Type SCO6993 Negatively Regulates Antibiotic Production at the Transcriptional Stage by Binding to Promoters of Pathway-Specific Regulatory Genes in Streptomyces coelicolor

  • Tsevelkhoroloo, Maral;Li, Xiaoqiang;Jin, Xue-Mei;Shin, Jung-Ho;Lee, Chang-Ro;Kang, Yup;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1134-1145
    • /
    • 2022
  • SCO6993 (606 amino acids) in Streptomyces coelicolor belongs to the large ATP-binding regulators of the LuxR family regulators having one DNA-binding motif. Our previous findings predicted that SCO6993 may suppress the production of pigmented antibiotics, actinorhodin, and undecylprodigiosin, in S. coelicolor, resulting in the characterization of its properties at the molecular level. SCO6993-disruptant, S. coelicolor ΔSCO6993 produced excess pigments in R2YE plates as early as the third day of culture and showed 9.0-fold and 1.8-fold increased production of actinorhodin and undecylprodigiosin in R2YE broth, respectively, compared with that by the wild strain and S. coelicolor ΔSCO6993/SCO6993+. Real-time polymerase chain reaction analysis showed that the transcription of actA and actII-ORF4 in the actinorhodin biosynthetic gene cluster and that of redD and redQ in the undecylprodigiosin biosynthetic gene cluster were significantly increased by SCO6993-disruptant. Electrophoretic mobility shift assay and DNase footprinting analysis confirmed that SCO6993 protein could bind only to the promoters of pathway-specific transcriptional activator genes, actII-ORF4 and redD, and a specific palindromic sequence is essential for SCO6993 binding. Moreover, SCO6993 bound to two palindromic sequences on its promoter region. These results indicate that SCO6993 suppresses the expression of other biosynthetic genes in the cluster by repressing the transcription of actII-ORF4 and redD and consequently negatively regulating antibiotic production.

Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean (Glycine max (L.) Merrill)

  • Chanwit Suriyachadkun;Orawan Chunhachart;Moltira Srithaworn;Rungnapa Tangchitcharoenkhul;Janpen Tangjitjareonkun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1435-1446
    • /
    • 2022
  • Zinc-solubilizing bacteria can convert the insoluble form of zinc into soluble forms available to plants. This study was conducted to isolate and screen zinc-solubilizing actinobacteria from rhizosphere soils and to assess their effect on vegetable soybean growth. In total, 200 actinobacteria strains belonging to 10 genera were isolated from rhizosphere soil samples. Among these isolates, four showed zinc solubilization with solubilizing index values ranging from 3.11 to 3.78 on Bunt and Rovira agar supplemented with 0.1% zinc oxide. For the quantitative assay, in broth culture, strains CME34 and EX51 solubilized maximum available zinc contents of 529.71 and 243.58 ㎍/ml. Furthermore, indole-3-acetic acid (IAA) and ammonia were produced by these two strains, the strain CME34 produced the highest amount of IAA 4.62 ㎍/ml and the strain EX51 produced the highest amount of ammonia 361.04 ㎍/ml. In addition, the phosphate-solubilizing abilities in Pikovskaya's medium of CME34 and EX51 were 64.67 and 115.67 ㎍/ml. Based on morphological and biochemical characterization and 16S rDNA sequencing, the strains CME34 and EX51 were closely related to the genus Streptomyces. In a greenhouse experiment, single-strain inoculation of Streptomyces sp. CME34 or EX51 significantly increased the shoot length, root length, plant dry weight, number of pods per plant and number of seeds per plant of vegetable soybean plants compared to the uninoculated control. These findings facilitated the conclusion that the two Streptomyces strains have potential as zinc solubilizers and can be suggested as bioinoculants to promote the growth and yield of soybean.

Isolation of Indole-3-acetic acid (IAA) producing Arthrobacter sp. and plant growth promotion effect (Indole-3-acetic acid (IAA) 생성 Arthrobacter sp.의 분리 및 식물 생육촉진 효과)

  • Da Som Kim;Ho-Young Shin;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.831-838
    • /
    • 2022
  • An auxin-producing bacteria, KSD16, KSD33, and KSD36 were isolated from agricultural soil. The strain KSD16, KSD33, and KSD36 was classified as a strain of Arthrobacter sp. based on phylogenetic analysis of 16S rRNA gene. The isolated KDS16, KDS33, and KSD36 was confirmed to produce indole-3-acetic acid (IAA), which is one of the auxin hormones. When the concentration of IAA was assessed the maximum concentration of IAA, 206.62 mg L-1, was detected from the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 48 h at 28 ℃. To study the effect of IAA producing bacteria on germination rate, seeds of Mung bean were prepared for each treatment. KSD16, KSD33, and KSD36 showed significant increase in root length and number of adventitious roots than the controls. To investigate the growth-promoting effects on the crops, Arthrobacter species were placed in water cultures and seed pots of mung beans. In consequence, the seed germination of mung beans was 73.4% higher than the control.

Steroid Components of Marine-Derived Fungal Strain Penicillium levitum N33.2 and Their Biological Activities

  • Chi K. Hoang;Cuong H. Le; Dat T. Nguyen;Hang T. N. Tran;Chinh V. Luu;Huong M. Le;Ha T. H. Tran
    • Mycobiology
    • /
    • v.51 no.4
    • /
    • pp.246-255
    • /
    • 2023
  • Genus Penicillium comprising the most important and extensively studied fungi has been well-known as a rich source of secondary metabolites. Our study aimed to analyze and investigate biological activities, including in vitro anti-cancer, anti-inflammatory and anti-diabetic properties, of metabolites from a marine-derived fungus belonging to P. levitum. The chemical compounds in the culture broth of P. levitum strain N33.2 were extracted with ethyl acetate. Followingly, chemical analysis of the extract leaded to the isolation of three ergostane-type steroid components, namely cerevisterol (1), ergosterol peroxide (2), and (3β,5α,22E)-ergosta-6,8(14),22-triene-3,5-diol (3). Among these, (3) was the most potent cytotoxic against human cancer cell lines Hep-G2, A549 and MCF-7 with IC50 values of 2.89, 18.51, and 16.47 ㎍/mL, respectively, while the compound (1) showed no significant effect against tested cancer cells. Anti-inflammatory properties of purified compounds were evaluated based on NO-production in LPS-induced murine RAW264.7 macrophages. As a result, tested compounds performed diverse inhibitory effects on NO production by the macrophages, with the most significant inhibition rate of 81.37±1.35% at 25 ㎍/mL by the compound (2). Interestingly, compounds (2) and (3) exhibited inhibitory activities against pancreatic lipase and α-glucosidase enzymes in vitro assays. Our study brought out new data concerning the chemical properties and biological activities of isolated steroids from a P. levitum fungus.