• 제목/요약/키워드: Cultivation region

검색결과 451건 처리시간 0.031초

C/N/O/S stable isotopic and chemometric analyses for determining the geographical origin of Panax ginseng cultivated in Korea

  • Chung, Ill-Min;Kim, Jae-Kwang;Lee, Ji-Hee;An, Min-Jeong;Lee, Kyoung-Jin;Park, Sung-Kyu;Kim, Jang-Uk;Kim, Mi-Jung;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.485-495
    • /
    • 2018
  • Background: The geographical origin of Panax ginseng Meyer, a valuable medicinal plant, is important to both ginseng producers and consumers in the context of economic profit and human health benefits. We, therefore, aimed to discriminate between the cultivation regions of ginseng using the stable isotope ratios of C, N, O, and S, which are abundant bioelements in living organisms. Methods: Six Korean ginseng cultivars (3-yr-old roots) were collected from five different regions in Korea. The C, N, O, and S stable isotope ratios in ginseng roots were measured by isotope ratio mass spectrometry, and then these isotope ratio profiles were statistically analyzed using chemometrics. Results: The various isotope ratios found in P. ginseng roots were significantly influenced by region, cultivar, and the interactions between these two factors ($p{\leq}0.001$). The variation in ${\delta}^{15}N$ and ${\delta}^{13}C$ in ginseng roots was significant for discriminating between different ginseng cultivation regions, and ${\delta}^{18}O$ and ${\delta}^{34}S$ were also affected by both altitude and proximity to coastal areas. Chemometric model results tested in this study provided discrimination between the majority of different cultivation regions. Based on the external validation, this chemometric model also showed good model performance ($R^2=0.853$ and $Q^2=0.738$). Conclusion: Our case study elucidates the variation of C, N, O, and S stable isotope ratios in ginseng root depending on cultivation region. Hence, the analysis of stable isotope ratios is a suitable tool for discrimination between the regional origins of ginseng samples from Korea, with potential application to other countries.

Comparison of Biochemical Composition and Antimicrobial Activity of Southern-Type Garlic Grown in the Eastern and Western Regions of Jeju (제주 동부와 서부지역 남도마늘의 생화학적 성분 및 항균활성 비교)

  • Kim, Ju-Sung;Ra, Jong Hwan;Hyun, Hae-Nam
    • Horticultural Science & Technology
    • /
    • 제33권5호
    • /
    • pp.763-771
    • /
    • 2015
  • Components and physiological activity of crops are strongly affected by the natural environments of the growth regions. In this study, we carried out soil analysis and determined the allicin, alliin, total pyruvate, total phenol and flavonoid, and reducing sugar contents of garlic from garlic-cultivating regions in the eastern and western portions of Jeju Province. Significantly higher contents of macronutrients were found in the soil and garlic from the eastern region of Jeju compared to western region, but micronutrients were higher in the western region than eastern region. In addition, the alliin and total phenolic contents were higher in the western region than in the eastern region. Also, allicin, total pyruvate, total flavonoid content, and ${\alpha}$-glucosidase inhibitory activity of the eastern region samples were higher than those of the western region in Jeju. This study promotes our understanding of the different components of garlic according to the cultivation regions of Jeju.

Evaluation of Cultivation Limit Area for Different Types of Barley owing to Climate Change based on Cultivation Status and Area of Certified Seed Request (기후변화에 따른 맥종별 재배실태와 보급종 보급지역에 의한 재배한계지 평가)

  • Park, Hyun Hwa;Lee, Hyo Jin;Roh, Sug Won;Hwangbo, Hoon;Kuk, Yong In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제67권2호
    • /
    • pp.95-110
    • /
    • 2022
  • This study was conducted to determine the extent to which climate change is expanding areas in which barley can be successfully cultivated. In 2019 and 2020, we collected data on areas that had requested certified seeds from the Korea Seed and Variety Service to determine potential cultivation areas. In addition, we surveyed the growth and yield of different types of barley in fields. Certified seeds of hulled and dehulled barley were requested by farmers across Korea from the Korea Seed and Variety Service in both years. Areas that were provided with certified seeds were considered potential barley cultivation areas. The varieties and use rates of certified seeds varied based on the barley type and region. For example, certified seeds of dehulled barley in 2019 and 2020 were not used in some areas, whereas in others, these seeds constituted 100% of the seeds sown for barley crops. In 2019 and 2020, the average sowing days in Korea were from October 17 to November 9 for dehulled barley, October 26 to November 13 for hulled barley, October 19 to November 5 for malting barley, and October 3 to November 1 for naked oats. Thus, the sowing days of the barley types varied depending on the area and year they were used. For example, in the case of hulled barley in Jeonnam, some farmers sowed until December 12. The yield per 10 a of barley cultivation was typically higher in the main production areas than in the cultivation limit areas. In extreme cases, harvest was impossible in some cultivation limited areas, such as Gangwon-do. Based on the current 20-year January minimum average temperature (JMAT) in Korea (2002-2021), climate change scenarios suggest that barley cultivation is feasible, provided that the minimum temperature in January is no lower than -10℃, -8℃, and -4℃ for hulled barley, dehulled barley, and for malting barley and naked oats, respectively. Additionally, cultivation of barley across South Korea seems feasible based on data on certified barley seeds by area. Although both JMAT and certified seed data suggest that barley cultivation across Korea is feasible, our survey results of barley growth and yield showed that harvest was impossible in certain cultivation areas, such as Gangwon-do. Therefore, climate change scenarios related to the cultivation limits of different barley types need to be re-estimated by factoring in survey data on the growth and yield of crops within those cultivation areas.

The Irrigation System of the Rice Cultivation in Mt. Chiri Region (지리산지 벼농사의 관개체계와 물관리방법)

  • 정치영
    • Journal of the Korean Geographical Society
    • /
    • 제35권2호
    • /
    • pp.227-241
    • /
    • 2000
  • 본 연구는 지리산지에서 평지와는 다른 자연환경에 적응하기 위해 어떠한 관개체계와 물관리방법들이 사용되어왔는지를 살펴보는데 목적이 있다. 지리산자의 관개체계는 도처에 분포하는 수량이 풍부한 계류에 보를 만들고 자연적인 경사를 이용해 수로를 설치하여 논으로 물을 끌어들이는 즉 보를 이용한 계류관개가 주를 이루고 있다. 또한 지리산지 농민들은 벼농사의 가장 큰 장애 요소인 저수온으로 인한 냉해를 막기 위해 여러 가지 물관리방법들을 고안.사용해 왔는데, 이는 관개수량을 최소화하는 방법과 수온을 상승시키는 시설로 구분할 수 있다.

  • PDF

Sensitive method for the detection of Apple scar skin viroid(ASSVd) by nested reverse transcription-polymerase chain reaction

  • Lee, Sung-Joon;Kim, Chung;Sim, Sang-Mi;Lee, Dong-Hyuk;Lee, Jai-Youl
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.143.2-143
    • /
    • 2003
  • A rapid and sensitive assay for the specific detection of plant viroids using reverse transcription-polymerase chain reaction(RT-PCR) has been developed already. The nested RT-PCR assay cloud be applied for the detection of apple scar skin viroid(ASSVd) from young leaves and other tissues. ASSVd has central conserved region(CCR), terminal left(T$\sub$L/) and terminal right(T$\sub$R/) domain. Primers were designed from these regions. Primer sets were successfully applicable for the amplification of full length or partial region of ASSVd by nested RT-PCR. Nested RT-PCR assay was more sensitive and accurate method to detect ASSVd from young trees during the early time of apple cultivation.

  • PDF

Gene Editing for Major Allergy Genes using Multiplex CRISPR-Cas9 System & Prime editing in Peanuts (Arachis hypogaea L.)

  • Min-cheol Kim;Tae-Hwan Jun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.194-194
    • /
    • 2022
  • Recently, food-induced allergies have emerged as major global concerns. In the past ten years, it has doubled in western nations, and it has also increased in Asia and Africa. In many cases of food allergy, peanut allergy is prevalent, typically permanent, and frequently life-threatening. Therefore, we utilized gene editing techniques on the three major allergen genes in peanuts, Ara h 1, Ara h 2, and Ara h 3. Using gibson assembly and golden gate assembly, we created two vectors, the gRNA-tRNA array CRISPR-Cas9 system and Prime-editing. Using LBA4404 strain and agrobacterium-mediated transformation, the vectors were transferred to two elite Korean peanut lines. After co-cultivation and tissue culture, we extracted the tissue cultured peanut DNA amplified the hygromycin resistance gene and Cas9 gene in the T-DNA region. The integration of the T-DNA region into the host genome was demonstrated by the presence of a specific band in some samples. There have only been a few reported peanut gene editing studies. So, this study will contribute to peanut allergy and gene editing research.

  • PDF