• Title/Summary/Keyword: Cucumis sativus L

Search Result 136, Processing Time 0.022 seconds

Different Susceptibilities to Low Temperature Photoinhibition in the Photosynthetic Apparatus Among three Cultivars of Cucumber (Cucumis sativus L.)

  • Oh, Kwang-Hoon;Lee, Woo-Sung;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.8 no.3_4
    • /
    • pp.105-112
    • /
    • 2001
  • Susceptibility to low temperature photoinhibition in photosynthetic apparatus was compared among three cucumber cultivars, Gahachungjang (GH), Banbaekjijeo (BB) and Gaeryangsymji (GR). By chilling in the light for 6 h, a sustained decrease in the potential quantum yield (Fv/Fm) and the oxidizable P700 contents was observed, and the decrease was less in GH than in BB and GR. Although the difference was small, some $\Phi_{PSII}$ remained in GH after light-chilling for 6 h indicating that a few electrons can flow around photosystem II(PSII). As a consequence, the primary electron acceptor of PSII, $Q_{A}$, was reduced slowly and was not fully reduced after light-chilling for 6 h in GH. Although the amplitude was small, the development of NPQ was also faster in GH, indicating a higher capacity for non-photochemical energy dissipation. The relative fraction of a fast relaxing component of NPQ (qf) was higher in GH. After light-chilling for 5 h, the values of qf in BB and GR became much smaller than that in GH, indicating BB and GR suffered more significant uncoupling of ATPase and/or irreversible damages in PSII. When fluorescence induction transients were recorded after chilling, significant differences in quenching coefficients (qQ and qN) were observed among the three cultivars.

  • PDF

Evaluation of Chloroplast Genotypes of Korean Cucumber Cultivars (Cucumis sativus L.) Using sdCAPS Markers Related to Chilling Tolerance

  • Ali, Asjad;Yang, Eun Mi;Lee, Sun Young;Chung, Sang-Min
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.219-223
    • /
    • 2013
  • DNA markers can determine the genotype of many species. Single nucleotide polymorphism (SNP) detection is difficult without sequencing but it becomes easier with sdCAPS method. Here an experiment was performed for developing molecular markers using two SNPs, CSatpB-SNP and CSycf1-SNP, of chloroplast in cucumber plants. Properly designed primers with nucleotide sequences for restriction enzymes proved success of PCR and efficacy of digestion by the restriction enzymes. Then these markers were used to study the genotyping of cucumber breeding lines and cultivars obtained from various sources in respect of their chilling stress response. We confirmed that a U.S. cucumber line, 'NC76' known to possess a nuclear factor for the chilling tolerance showed the chloroplast genotypes related to chilling tolerance. However all Korean cucumber cultivars tested in this study showed the chloroplast genotypes related to chilling susceptibility. In conclusion, to develop chilling tolerant cucumber, both maternal and a nuclear factors related to chilling tolerance should be transferred from 'NC76' when 'NC76' is used as a female source and other elite lines as recurrent parents.

Development of transgenic disease-resistant root stock for the growth of watermelon

  • Cho, Song-Mi;Chung, Soo-Jin;Moon, Sun-Jin;Kim, Kwang-Sang;Kim, Young-Cheol;Cho, Baik-Ho
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.62-65
    • /
    • 2004
  • To protect the watermelon against soil-borne pathogens, we are currently producing disease-resistant transgenic root stock for the growth of watermelon, A defensin gene (J1-1) from Capsicum annum, a ACC deaminase gene from Pseudomonas syringae, a galactinol synthase (CsGolS) gene from Cucumis sativus, and a WRKY (CvWRKY2) gene from Citullus vulgaris were used as transgenes for disease resistance. The gene were transformed into a inbred line (6-2-2) of watermelon, Kong-dae watermelon and a inbred line (GO702S) of gourd, respectively, by Agrobacterium-mediated transformation. Putative transgenic plants were selected in medium containing 100mg/L kanamycin, and then integration of the genes into the genomic DNA were demonstrated by PCR analysis. Successful integration of the gene in regenerated plants was also confirmed by PCR (Figf 1), genomic Southern blot (Fig 2), RT-PCR (Fig 3), and Northern blot analysis(Fig 4). Several T1 lines having different transgene were produced, and disease resistance of the T1 lines are under estimation.

  • PDF

Effects of the special media on the mycelium growth in Agaricus campestris(II) (몇가지 물질(物質)이 Agaricus campestris균사생장(菌絲生長)에 미치는 영향(影響) (제(第) II 보(報)))

  • Cho, So-Nam;Hwang, Kyu-Chan
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.189-193
    • /
    • 1978
  • Effects of the special media on the mycelium growth in Agaricus campestris has been studied. The results are summarized as follows; 1. The mycelium growth of Agaricus campestris were considerably Stimulated on the Carrot (Dancus carota L.) basal medium which was added 4ml. of carrot extract, Cucumber(Cucumis sativus L.) basal medium added 3ml of cucumber extract, and Radish (Rhaphanus sativus L.) basal medium added 3ml. of radish extract during the culture for 144 hours. 2. The mycelium of Agaricus campestris on the media which was added the several kinds of vegetable extracts shows a lot of growth for 144 hours. The orders are as follows; Carrot basal medium(4ml/100ml)>Cucumber basal medium (3ml/100ml)>Radish basal medium (3ml/100ml)>Lettuce basal medium (2ml/100ml)>Cabbage basal medium (2ml/100ml). However, the Lettuce (Lactuca scariota L.) basal medium and the Cabbage (Brassica chinensis L.) basal medium among these five media are no significant differences.

  • PDF

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse (유기농 시설채소 재배지 토양의 물리적 특성변화)

  • Lee, Sang-Beom;Choi, Won-A;Hong, Seung-Gil;Park, Kwang-Lai;Lee, Cho-Rong;Kim, Seok-Cheol;An, Min-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.963-974
    • /
    • 2015
  • This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

Ditribution of silicon and growth inhibition of powdery mildew fungus in cucumber leaves in silicon-present hydroponic culture (규소 처리에 의한 오이잎의 규소분포 및 흰가루병균 생장억제)

  • Lee, Jung-Sup
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.44-49
    • /
    • 2000
  • Objective of this study was to determine the Si distribution and extent of control of powdery mildew diseases of cucumber(Cucumis sativus L.). The distribution of silicon in the leaf epidermis of cucumber plants grown in hydroponic nutrient solutions supplemented with soluble silicates was examined using scanning electron microscopy and energy dispersive X-ray analysis. The silicate absorbed from nutrient solution was translocated into cucumber leaves, and accumulated mainly in the cells surrounding the base of trichome hairs. Base cells surrounding the trichomes also had high levels of Si, Ca, and K. Si levels in the epidermal cells for low Si treatment were not detectable except in the trichome bases. Hyphal lengths of powdery mildew occurring on cucumber leaves cultivated in medium with high concentration of silicate were remarkably shorter than those of cucumber leaves cultivated with low concentration of silicate. There was a negative correlation between hyphal length of S. fuliginea and silicate concentrations.

  • PDF

Disease Resistance Test Method of Cucumber Powdery Mildew(Sphaerotheca fusca) Using A Leaf Disk Assay (잎절편 (Leaf disk)을 이용한 오이 횐가루병 (Sphaerotheca fusca)에 대한 내병성 검정법)

  • Lee, Yong-Hwan;Seo, Jong-Bun;Choi, Kyong-Ju;Park, In-Jin;Yang, Won-Mo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.78-81
    • /
    • 2004
  • The resistance of 10 varieties of cucumber (Cucumis sativus L.) to powdery mildew, caused by Sphaerotheca fusca, was evaluated by a leaf disk assay. Leaf disks (10 mm in diameter) were removed from fully expanded leaves and then placed in petri dishes containing 0.16% water agar amended with benzimidazole. Leaf disks were inoculated by dropping a 10 $\mu$l of conidia suspension. Conidiophore formation of powdery mildew was the greatest at $25^{\circ}C$. The response of the host to powdery mildew, based on the inoculation onto disks of the first leaf, highly correlated with results obtained from harvesting stage of cucumber plants in greenhouse test (r = 0.99$^{**}$). It is indicating that a leaf disk assay may precisely predict the response of cucumber plant to S. fusca.a.

Effects of Chilling Injury in the Light on Chlorophyll Fluorescence and D1 Protein Turnover in Cucumber and Pea Leaves

  • Eu, Young-Jae;Ha, Suk-Bong;Lee, Choon-Hwan
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.398-404
    • /
    • 1996
  • Light-chilling effects were investigated in chilling-sensitive cucumber (Cucumis sativus L. cv. Ilmichungjang) and chilling-resistant pea (Pisum sativum L. cv. Giant) leaf discs in relation to possible damage in D1 protein. In both plants, dark-chilling did not cause any noticeable changes in (Fv)m/Fm and lincomycin did not affect the decrease in (Fv)m/Fm caused by light-chilling. This result suggests that the de novo synthesis of D1 protein did not occur actively during light-chilling. In pea light-chilled for 6 h. the decreased (Fv)m/Fm was partly recovered in the dark, and almost complete recovery was observed in the light. In cucumber light-chilled for 3 h. the reduced (Fv)m/Fm decreased further for the initial 2 h recovery process in the light regardless of the treatment of lincomycin and recovered very slowly. In both plant species, the treatment of lincomycin inhibited the recovery process in the light, but did not significantly inhibit the process in the dark. In cucumber leaves pulse-labeled with $[^{35}S]Met$, the labeled band intensities of isolated pigment-protein complexes were almost the same during the 6 h light-chilling, but significant decreases in band intensities were observed during the 3 h recovery period. This result suggests that the irreversibly damaged D1 protein was degraded during the recovery period. However, no noticeable changes were observed in the pea leaves during the 12 h chilling and 3 h recovery period. The polyacrylamide gel electrophoresis of the pigment-protein complexes showed that the principal lesion sites of light-chilling were different from those of room temperature photoinhibition.

  • PDF

Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Park, Young-Eun;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.372-378
    • /
    • 2015
  • Growing crops under different soil textures may affect crop growth and yield because of soil N availability, soil N leaching, and plant N uptake. The objective of this study was to evaluate effects of three different soils (sandy loam, loam, and clay loam) on cucumber (Cucumis sativus L.) yield, nitrogen (N) use efficiency (NUE), and water use efficiency (WUE) by subsurface drip fertigation in the greenhouse. Three different soil textures are sandy loam, loam, and clay loam with 3 replications. The dimension of each lysimeter was $1.0m(W){\times}1.5m(L){\times}1.0m(H)$. Cucumber was transplanted on April $8^{th}$ and Aug $16^{th}$ in 2011. The subsurface drip line and tensiometer was installed at 30 and 20 cm soil depth, respectively. An irrigation with $100mg\;NL^{-1}$ concentration was automatically applied when the tensiometer reading was 10 kPa. Volumetric soil water content for cucumber cultivation was the highest in 30 cm soil depth regardless of soil texture and was lowered when soil depth was deeper. The volumetric soil water contents at soil depths of 10, 30, 50, and 70 cm were the highest at clay loam, followed by loam, and sandy loam. The growth of cucumber at the $50^{th}$ day after transplanting was the lowest at sandy loam. Cucumber fruit yields were similar for all three soil textures. The highest amount of water use at sandy loam was observed. Nitrogen and water use efficiencies for cucumber were higher for clay loam, followed by loam and sandy loam, while the amount of N leaching was the greatest under sandy loam, followed by loam, and clay loam. Overall, growing cucumber on either loam or clay loam is better than sandy loam if subsurface drip fertigation is used in the greenhouse.

Effects of Growth Regulator for Promoting Lateral Shooting in White-Spine Cucumber(Cucumis sativus L.) (백침계 모이 측지발생 촉진을 위한 생장조정제 이용 효과)

  • Lee Jae Han;Kwon Joon Kook;Kang Nam Jun;Jung Ho Jung;Park Jin Myeon;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.275-279
    • /
    • 2005
  • The fruiting habit pattern of white-spine cucumber, whose fruits are usually borne on the lateral branches, is different from domestic ones. The cucumber production far export has been focused on how to promote lateral shooting and how to increase the number of lateral branches. As the growing season of the exporting cucumber is confined to winter season, low temperature and weak light are limiting factors to lateral shooting. This study was conducted to investigate the effect of foliar application of growth regulator for induction of lateral shoot in white-spine cucumber. foliar application of growth regulator were focused on concentration and application time based on number of leaves. The visible damages were observed in applied leaves by $30mg{\cdot}L^{-1}$ BA(benzyladenine) in retarding culture, but no significant by $10mg{\cdot}L^{-1}$ BA in case of semi-forcing culture. The number of available lateral shoots were greater in applied plant with $10mg{\cdot}L^{-1}$ BA than that of $30mg{\cdot}L^{-1}$ BA, in applied plants at 10th and 15th loaves than that of applied plants at 5th leaves.