• Title/Summary/Keyword: Cu-Sn alloy

Search Result 218, Processing Time 0.033 seconds

Effects of P Addition and Homogenizing Heat Treatment on the Mechanical Properties of Centrifugal Cast Cu-Sn-Ni-P Alloy (원심주조한 Cu-Sn-Ni-Pb계 합금의 기계적 성질에 미치는 P첨가와 균질화 처리의 영향)

  • Kwon, Young-Hwan;Jea, Chang-Wooing;Yoon, Jae-Hong;Kang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.443-449
    • /
    • 1997
  • The purpose of this study is to investigate the effect of P addition and homogenizing heat treatment on the mechanical properties of Cu-Sn-Ni alloy. The addition of P was 0.025wt.%P to 0.085wt.%P and homogenizing heat-treated at 400, 500, $600^{\circ}C$ under $N_2$ gas atmosphere. Mechanical properties was investigated in this study were Rockwell hardness, tensile strength, and elongation. Tensile strength and elongation increased with P and homogenizing time. Temperature was significantly influence on mechanical properties. Hardness decreased with increasing homogenizing time and temperature, but 0.085wt.%P specimen was showed higher hardness and lower tensile strength and elongation than 0.073wt.%P specimen due to the presence of more $Cu_3P$ in matrix.

  • PDF

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries

  • Abd El-Rahman, H.A.;Gad-Allah, A.G.;Salih, S.A.;Abd El-Wahab, A.M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.

Restoration and Scientific Analysis of Casting Bronze Type in Joseon Dynasty (조선왕실 주조 청동활자의 복원과 과학적 분석)

  • Yun, Yong-Hyun;Cho, Nam-Chul;Lee, Seung-Cheol
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.207-217
    • /
    • 2009
  • After replicating 10 bronze types such as Gyemija, Gyeongjaja, Eulhaeja, etc. before the Imjin war, we studied the change of microstructure from each casting process, method, and alloy ratio by Gyechukja replicated from "Donggukyeojiseungnam". We selected the average of compositions of Eulhaeja in the National Museum of Korea as the standard(Cu 86.7%, Sn: 9.7%, Pb: 2.3%) of bronze types, so we decided on the alloy's composition of Cu 87%, Sn 15%, Pb 8% added to 5% Sn and Pb contents because of evaporating the Sn and the Pb. Before replicating major metal types, we made master-alloy first, melting it again, and then replicated metal types. The composition of the 1'st replicated Gyechukja showed the range of Cu 85.81~87.63%, Sn 9.27~10.51%, Pb 3.05~3.19%. The 2'nd replicated Gyechukja made using the branch metal left after casting the 1st replica. The 2nd replicated Gyechukja showed the composition range of Cu 87.21~88.09%, Sn 9.06~9.36%, Pb 2.80~3.05%. This result decreases a little contents of Sn and Pb as compared with metal types of the 1st replica. However, it's almost the same as the Eulhaeja's average composition ratio in the National Museum of Korea. As a result of observing the microstructure of restored Gyechukja, it showed the dendrite structure of the typical casting structure and the segregation of Pb. There is no big difference of microstructure between the 1st and the 2nd restored metal types, even though the 2nd restored types partially decreases the eutectoid region in comparison with the 1st types. The systematic and scientific restoration experiment of metal types using Joseon period will be showed the casting method and alloy ratio, and this will be of great help to the study of restoration metal types in the future.

  • PDF

Study on the Brazing Characteristics of LTCC/Kovar (LTCC/Kovar 간의 Brazing 특성 연구)

  • Lee, W.S.;Cho, H.M.;Lim, W.;Yoo, C.S.;Lee, Y.S.;Kang, N.K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.57-57
    • /
    • 2000
  • Brazing characteristics of the LTCC(Low Temperature Co-fired Ceramics)/ Kovar(Fe-Ni-Co alloy) was investigated. Kovar is one of the typical material for the lid of MCM and packages. In case of alumina package, Brazing process is done by higher temperature profile than 800 $^{\circ}C$ and Ag-Cu alloy. But, LTCC has sintering temperature near 850 $^{\circ}C$. So, it is difficult to use the same process as alumina brazing. The adhesion strength of the brazed part is affected by brazing alloy and metallization properties between conductor pattern and LTCC material. We investigated brazing characteristics of the LTCC/Kovar using various brazing alloys(Ag-Cu, Au-Sn) and process conditions. And, we examined the influence of the glass contents in conductor on the brazing characteristics of the LTCC/Kovar.

  • PDF

Effect of Final Annealing Temperature on Microstructure and Creep Characteristics of Nb-containing Zirconium Alloys (Nb 첨가 Zr 합금의 미세조직과 Creep 특성에 미치는 마지막 열처리 온도의 영향)

  • Park, Yong-Gwon;Yun, Yeong-Gwon;Wi, Myeong-Yong;Kim, Taek-Su;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.879-888
    • /
    • 2001
  • The effects of final annealing temperature on the microstructure and creep characteristics were investigated for the Zr-lNb-0.2X (X=0, Mo, Cu) and Zr-lNb- 1Sn-0.3Fe-0.1X (X=0, Mo, Cu) alloys. The microstructures were observed by using TEM/EDS, and grain size and distributions of precipitates were analyzed using a image analyzer. The creep test was performed at $400^{\circ}C$ under applied stress of 150 MPa for 10 days. The $\beta$-Zr was observed at annealing temperature above $600^{\circ}C$. In the temperature above$ 600^{\circ}C$, the grain sizes of both alloy systems appeared to be increased with increasing the final annealing temperature. The creep strengths of Zr-1Nb-1Sn-0.3Fe-0.1X alloys were higher than those of Zr-1Nb-0.2X ones due to the effect of solid solution hardening by Sn in Zr-lNb-lSn-0.3Fe-0.1X alloy system. Also, Mo addition showed the strong effect of precipitate hardening in both alloy systems. The creep strength rapidly decreased with increasing the annealing temperature up to $600^{\circ}C$. However, a superior creep resistance was obtained in the sample that annealed to have a second phase of $\beta$-Zr. It was considered that the appearance of $\beta$-Zr would play an important role in the strengthening mechanism of creep deformation.

  • PDF

A Study of Debinding Behavior and Microstructural Development of Sintered Al-Cu-Sn Alloy

  • Kim, J.S.;Chang, I.T.;Falticeanu, C.L.;Davies, G.J.;Jiang, K.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.722-723
    • /
    • 2006
  • A new method has been developed to fabricate microcomponents by a combination of photolithography and sintering of metallic powder mixtures, without the need for compression and the addition of Mg. This involves (1) the fabrication of a micromould, (2) mould filling of the powder/binder mixture, (3) debinding and (3) sintering. The starting powdered materials consisted of a mixture of aluminium powder(average size of 2.5 um) and alloying elemental powder of Cu and Sn(less than 70nm), at appropriate proportions to achieve nominal compositions of Al-6wt%Cu, Al-6wt%Cu-3wt%Sn. This paper presents detailed investigation of debinding behaviour and microstructural development.

  • PDF

Effects of Heat Treatment Temperature and Cooling Method on Microstructure and Hardness of Cu-22Sn alloy (열처리 온도 및 냉각방법이 Cu-22Sn합금의 미세조직 및 경도변화에 미치는 영향)

  • Jeong, Museob;Shin, Ari;Han, Jun Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.104-110
    • /
    • 2018
  • The effects of heat treatment time and cooling method on microstructure and mechanical property of Cu-22wt%Sn alloy were discussed. ${\alpha}+{\delta}$ mixed phase structure was obtained in air-cooled specimens after heat treatment at 775, 750, and $700^{\circ}C$ for 1 hour. On the other hand, in water-cooled specimens, ${\alpha}+{\beta}^{\prime}$ martensite mixed phase was obtained. In the case of water-cooled specimens, the hardness value decreased with decreasing heat treatment temperature because the volume fraction of ${\alpha}$ phase with low hardness value increased as the heat treatment temperature decreased. In water-cooled specimen after heat treatment at $600^{\circ}C$, ${\gamma}^{\prime}$ martensite was formed instead of ${\beta}^{\prime}$ martensite. The hardness value of ${\gamma}^{\prime}$ martensite was lower than those of ${\beta}^{\prime}$ and ${\delta}$ phases.

Study on the Physical Properties of Cu-Zn-Sn Alloy by Organic Additives (유기물 첨가제에 따른 Cu-Zn-Sn 합금 도금층 물성 연구)

  • Lee, Ju-Yeol;Lee, Sang-Yeol;Park, Sang-Eon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.147-147
    • /
    • 2008
  • 역전파 신경망은 반도체 공정 모델링에 효과적으로 응용되고 있으며, 모델의 예측정확도를 향상시키기 위하여 Random Generator를 개발하였다. Random Generator의 효과가 기존의 모델에 비해 예측정확도의 향상에 영향을 주었음을 알 수 있었다. 모델링에 이용한 실험데이터는 다중 유도결합형 플라즈마 장비를 이용하여 수집하였다.

  • PDF

The Effect of Sn on the Glass Formation Ability of the Zr-based Amorphous Alloy (Zr-based 비정질 합금의 비정질 특성에 미치는 Sn의 영향)

  • Lee, Byung-Chul;Park, Heong-Il;Park, Bong-Gyu;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.49-53
    • /
    • 2014
  • In commercial Zr-Nb-Cu-Ni-Al amorphous alloys, expensive element, Zr, was substituted to Sn which was cheaper one, and then, glass forming ability, compressive strength and hardness of them were estimated. Even though the Sn was added up to 1.5%, resulting phase was not changed to the crystalline form. It was confirmed by X-ray diffraction and thermal analyses. In the X-ray profiles, there were no peaks for crystalline phases and typical halo pattern for amorphous phase was appeared at the diffraction angle of $35^{\circ}{\sim}45^{\circ}$. Thermal analyses also showed that the Sn modified alloys were corresponded to the amorphous standards where ${\delta}T$(= Tx - Tg) and Trg(= Tg/Tm) affecting to the amorphous forming ability were more than 50K and 0.60 respectively. Compressive strengths were 1.77 GPa, 1.63 GPa, 1.65 GPa and 1.77 GPa for 0%Sn, 0.5%Sn, 1.0%Sn and 1.5%Sn respectively. Hardnesses of the Sn modified alloys were decreased from 752 Hv to 702 Hv in 1.0%Sn and recovered to 746 Hv in 1.5%Sn.

A Study on the Traditional Forged High Tin Bronzes and the Rivet Joints in Korea (한국의 전통 방짜유기와 이에 사용된 리벳에 관한 연구)

  • Lee, Jae Sung;Kim, Won Soo;Park, Jang Sik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • Examination of two bronze vessels supposedly from the Koryo dynasty revealed that they consist of bowls and stands that are fixed together using rivet joints made of Cu-Ag alloys. The bowls and stands were forged out of unleaded bronze alloys of approximately 22 weight % Sn before being quenched from the ${\alpha}+{\beta}$ region of the Cu-Sn phase diagram. This specific alloy and the thermo-mechanical treatment constitute two key elements of the unique technical tradition called Bangcha (방짜) that has long been established in Korea. The high Sn content ensures better casting and the thermal treatment causes the brittle ${\delta}$ phase to be avoided in forging as well as in services. The experiment on the laboratory Cu-Ag alloys of varying Ag contents suggested that the Cu-Ag system was the best choice of materials for the rivets at the time in view of their color, availability, ductility and low melting points.