• Title/Summary/Keyword: Cu-Cu 접합

Search Result 661, Processing Time 0.022 seconds

Brittle Fracture Behavior of ENIG/Sn-Ag-Cu Solder Joint with pH of Ni-P Electroless Plating Solution (무전해 니켈 도금액 pH 변화에 따른 ENIG/Sn-Ag-Cu솔더 접합부의 취성파괴 특성)

  • Seo, Wonil;Lee, Tae-Ik;Kim, Young-Ho;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.29-34
    • /
    • 2020
  • The behavior of brittle fracture of electroless nickel immersion gold (ENIG) /Sn-3.0wt.%Ag-0.5wt.%Cu (SAC305) solder joints was evaluated. The pH of the electroless nickel plating solution for ENIG surface treatment was changed from 4.0 to 5.5. As the pH of the Ni plating solution increased, pin hole in the Ni-P layer increased. The thickness of the interfacial intermetallic compound (IMC) of the solder joint increased with pH of Ni plating solution. The high speed shear strength of the SAC305 solder joint on ENIG surface finish decreased with the pH of the Ni plating solution. In addition, the brittle fracture rate of the solder joint was the highest when the pH of the Ni plating solution was 5.

Joining and properties of electrode for CoSb3 thermoelectric materials prepared by a spark plasma sintering method (방전 플라즈마 소결법을 이용한 CoSb3계 열전재료의 전극 접합 및 특성)

  • Kim, K.H.;Park, J.S.;Ahn, J.P.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2010
  • $CoSb_3$-based skutterudite compounds are promising candidates as thermoelectric (TE) materials used in intermediate temperature region. In this study, sintering of $CoSb_3$ powder and joining of $CoSb_3$ to copper-molybdenum electrode have been simultaneously performed by spark plasma sintering technique. The Ti foil was used for preventing the diffusion of copper into $CoSb_3$ and the Cu : Mo = 3 : 7 Vol. ratio composition was selected by the consideration of thermal expansion coefficients. The insertion of Ti interlayer between Cu-Mo and $CoSb_3$ was effective to join $CoSb_3$ to Cu-Mo by forming an intermediate layer of $TiSb_2$ at the Ti-$CoSb_3$ boundary. However, the formation of TiSb and TiCoSb intermediate layers deteriorated the joining properties by the generation of cracks in the interface of intermediate layer/$CoSb_3$ and intermediate/intermediate layers.

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

Organic photovoltaic effects using CuPc and $C_{60}$ depending on the layer thickness (CuPc와 $C_{60}$를 이용한 유기 광기전 소자에서 유기층의 두께에 따른 특성 연구)

  • Hur, Sung-Woo;Oh, Hyun-Seok;Lee, Joon-Ung;Lee, Sung-Il;Han, Won-Keun;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.43-46
    • /
    • 2004
  • CuPc와 $C_{60}$을 이용하여 ITO/CuPc/Al의 CuPc 단층구조와 $ITO/CuPc/C_{60}/Al$의 이종접합 구조에서의 광기전 특성을 연구하였다. CuPc 단층구조에서는 CuPc층의 두께를 10nm에서 50nm로 가변하여 전압-전류 특성을 측정한 결과 40nm 부근에서 최적화된 전기적인 특성이 나타났으며, $CUPC/C_{60}$의 이종접합 구조에서는 CuPc와 $C_{60}$의 두께 비율을 1 : 1 (20nm : 20nm), 1 : 2 (20nm : 40nm), 1 : 3 (20nm : 60nm)으로 가변하여 측정한 결과, 1 : 2의 두께비에서 최적화된 특성을 얻었다. 광원은 500W Xe lamp(ORIEL 66021)를 이용하였으며, 광원의 세기는 보정된 radiometer/photometer (International Inc. IL14004)와 Si-photodiode로 측정하였다.

  • PDF

Synthesis of Cu Sintering Paste Using Growth of Nanofiber on Cu Microparticles Mixed with Formic Acid (포름산 혼합 나노섬유 성장 구리마이크로입자를 이용한 구리 소결 페이스트 합성)

  • Young Un Jeon;Ji Woong Chang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.96-99
    • /
    • 2024
  • A sintering paste for bonding copper plates was synthesized using Cu formate nanofibers on Cu microparticles, mixed with formic acid. Copper oxide nanofibers of 10 ㎛ grown at 400 ℃ on Cu microparticles on the surface were transformed into copper formate nanofibers through the mixing of formic acid. Compared to Cu bulk particles or nanoparticles, Cu formate on Cu microparticles decomposed into metallic Cu at a lower temperature of 210 ℃, facilitating the sintering of copper paste. The growth of nanofiber on Cu microparticles allowed for an increase in the reaction rate of formation to copper formate, aggregating surface area, and decomposition rate of copper formate, resulting in fast sintering.