• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.025 seconds

The Manufacturing Techniques of the Stone Standing Maitreya Bodhisattva Bronze Wind Chimes of Gwanchoksa Temple, Nonsan (자연과학적 분석을 통한 논산 관촉사 석조미륵보살입상(論山 灌燭寺 石造彌勒菩薩立像) 청동풍탁(靑銅風鐸)의 제작 기법 연구)

  • LEE, Soyeon;CHUNG, Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.22-37
    • /
    • 2021
  • The wind chime is a longstanding Jangeomgu (majestic article) found in Korea, China, and Japan. However, basic research on wind chimes is currently inadequate as it is difficult to estimate the time of production, and there are few relics. Therefore, this research morphologically classifies the eight bronze wind chimes decorating the baldachin of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan. Based on this, the manufacturing techniques and production period are scientifically demonstrated. The synthesis of the research results reveals that the structure and characteristics of the wind chimes of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan differ depending on their location on the baldachin. The four large-sized wind chimes on the lower-baldachin were manufactured by casting a Cu-Sn-Pb alloy, and they are estimated to have been made during the early period of Goryeo. The two medium-sized wind chimes of the upper-baldachin's northern direction were manufactured through forging a Cu-Sn or Cu-Sn-Pb alloy, and they appear to have a similar structure to the cylindrical wind chimes appearing during the latter period of Goryeo and the Joseon period. The two small-sized wind chimes of the upper-baldachin's southern direction were manufactured by casting a Cu-Sn-Pb alloy containing Zn, and based on the chemical composition of the alloy and the shape of the clapper, they are estimated to have been manufactured during the latter period of Joseon. Through the observation of microstructures and a chemical composition analysis, it is demonstrated that two wind chimes of the lowerbaldachin were manufactured by casting and slow cooling the alloy with an alloy ratio of Cu:Sn:Pb≒80:15:5. In addition, it is estimated that the wind chimes of the upper-baldachin's northeast direction were manufactured by forging an alloy of Cu-Sn with a similar alloy ratio to that of forged high tin bronze. The results of a comparative analysis of prior research on domestic wind chimes confirm that two wind chimes of the lower-baldachin have a similar composition ratio to the wind chime excavated from Wolnamsaji in Gangjin, containing an amount of tin that corresponds with ancient records. Having a similar alloy ratio to forged high tin bronze, the wind chimes of the upper-baldachin's northeast direction are the only instances among all of the wind chimes that have been examined to date that were manufactured using this forging method. The purpose of this research is to collect baseline data to verify and classify the manufacturing period of wind chimes according to their morphological characteristics based on scientific evidence. It is hoped that this data can be utilized for the restoration and conservation processes of the wind chimes of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan.

Effects of Se/(S+Se) Ratio on Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Film Solar Cells Fabricated by Sputtering

  • Park, Ju Young;Hong, Chang Woo;Moon, Jong Ha;Gwak, Ji Hye;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.75-79
    • /
    • 2015
  • Recently, $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) has been received a tremendous attraction as light absorber material in thin film solar cells (TFSCs), because of its earth abundance, inexpensive and non-toxic constituents and versatile material characteristics. Kesterite CZTSSe thin films were synthesized by sulfo-selenization of sputtered Cu/Sn/Zn stacked metallic precursors. The sulfo-selenization of Cu/Sn/Zn stacked metallic precursor thin films has been carried out in a graphite box using rapid thermal annealing (RTA) technique. Annealing process was done under sulfur and selenium vapor pressure using Ar gas at $520^{\circ}C$ for 10 min. The effect of tuning Se/(S+Se) precursor composition ratio on the properties of CZTSSe films has been investigated. The XRD, Raman, FE-SEM and XRF results indicate that the properties of sulfo-selenized CZTSSe thin films strongly depends on the Se/(S+Se) composition ratio. In particular, the CZTSSe TFSCs with Se/(S+Se) = 0.37 exhibits the best power conversion efficiency of 4.83% with $V_{oc}$ of 467 mV, $J_{sc}$ of $18.962mA/cm^2$ and FF of 54%. The systematic changes observed with increasing Se/(S+Se) ratio have been discussed in detail.

투명 유연 AMOLED TV 구현을 위한 증착형 SnO2/Ag-Pd-Cu(APC)/SnO2 다층 투명 캐소드 박막 연구

  • Kim, Du-Hui;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.181.2-181.2
    • /
    • 2016
  • OLED 소자는 발광 방향에 따라 Bottom Emission 방식과 Top Emission 방식으로 나뉜다. 이 중 대면적 OLED TV 적용에 개구율이 더 높은 Top Emission방식을 선호하는 추세이다. 높은 개구율을 가진 Top Emission OLED소자를 위해서는 투명하고 전도성이 높은 캐소드가 중요하다. 본 연구에서는 Themal Evaporation 시스템을 이용하여 증착한 $SnO_2/Ag-Pd-Cu(APC)/SnO_2$ hybrid 전극의 특성을 연구하고 Oxide/Metal/Oxide(OMO) hybrid 박막의 bending mechanism을 제시하였다. base pressure는 $1{\times}10^{-6}Torr$로 고정하고 $SnO_2$ 박막은 0.34A / 0.32V, APC 박막은 0.46A / 0.40V의 power로 성막하였다. APC와 $SnO_2$의 두께를 변수로 OMO 전극을 제작하였고 그 전기적, 광학적 특성을 Hall measurement, UV/Visible spectroscopy을 이용하여 분석하고 Figure of merit 값을 바탕으로 최적 두께를 설정하였다. UPS(Ultraviolet Photoelectron Spectroscopy) 분석으로 $SnO_2/APC/SnO_2$ 전극의 일함수을 통해 투명 cathode로 쓰였을 때 $SnO_2$ 층이 buffer layer역할을 함을 확인하였다. XPS(X-ray photoelectron spectroscopy)를 이용하여 정성분석과 정량분석을 하였고 OMO hybrid 전극의 bending mechanism 연구를 위해 다양한 bending test (Inner/Outer dynamic fatigue test, twisting test, rolling test)를 진행하였다. 물리적 힘이 가해진 OMO hybrid 전극의 표면과 구조는 FE-SEM(Field Emission Scanning Electron Microscope) 분석을 통해서 확인할 수 있었다.

  • PDF

신안동전성분분석에 관한 연구(I)

  • Lee, Chang-Keun;Kang, Dae-III;Hwang, Chae-Geum
    • 보존과학연구
    • /
    • s.6
    • /
    • pp.121-196
    • /
    • 1985
  • Atomic absorption spectrophotometer was used for analyzing each 10elements(Cu, Pb, Sn, Zn, Sb, Fe, Ni, Ag, Co and Mn)on 64 Chinese coinsre covered from Shinan seabed sunken ship. The results show that Cu, Pb and Sn were found to be a major elements consisting of coins and its composition ratio was 6 to 2 to 1.The composition of trace elements on coins was classified 3 levels : Sb, Fe and Zn(0.02%-2.2%), Ag, Ni, and Co(50 ppm-5500 ppm) and Mn(Trace). Theam ount of major elements, Cu and Sn were decreased while increased in Pbby the passage of ages (10th - 13th century) in China. There seems to be no systematic compositional change in major elements but content in trace elements was confirmed to increase with age.

  • PDF

Polarization Behaviors of SnCu Pb-Free Solder Depending on the P, Ni, Addition (SnCu계 무연솔더의 Ni, P 첨가에 따른 분극거동)

  • Hong Won Sik;Kim Whee Sung;Park Sung Hun;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.528-535
    • /
    • 2005
  • It is inclined to increase that use of hazardous substances such as lead(Pb), mercury (Hg), cadmium(Cd) etc. are prohibited in the electronics according to environmental friendly policies of an advanced nation for protecting environment of earth. As this reasons, many researches for ensuring the reliability were proceeding in Pb free soldering process. n the flux remains on the PCB(printed circuit board) in the soldering process or the electronics exposed to corrosive environment, it becomes the reasons of breakdown or malfunction of the electronics caused by corrosion. Therefore in this studies we researched the polarization and Tafel properties of Sn40Pb and SnCu system solders based on the electrochemical theory. The experimental polarization curves were measured in distilled ionized water and 1 mole $3.5 wt\%$ NaCl electrolyte of $40^{\circ}C$, pH 7.5. Ag/AgCl and graphite were utilized by reference and counter electrodes, respectively. To observe the electrochemical reaction, polarization test was conducted from -250mV to +250mV. From the polarization curves composed of anodic and cathodic curves, we obtained Tafel slop, reversible electrode potential(Ecorr) and exchange current density((cow). In these results, we compared the corrosion rate of SnPb and SnCu solders.

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module (태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화)

  • Lee, Byung-Suk;Oh, Chul-Min;Kwak, Hyun;Kim, Tae-Woo;Yun, Heui-Bog;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.

Shearing Characteristics of Sn3.0AgO.5Cu Solder Ball for Standardization of High Speed Shear Test (고속전단시험의 표준화를 위한 Sn3.0Ag0.5Cu 솔더볼의 전단특성)

  • Jung, Do-Hyun;Lee, Young-Gon;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • Shearing characteristics of Sn-3.0wt%Ag-0.5wt%Cu ball for standardization of high speed shear test were investigated. The solder ball of 450 ${\mu}m$ in diameter was reflowed at $245^{\circ}C$ on FR4 PCB (Printed Circuit Board) to prepare a sample for the high-speed shear test. The metal pads on the PCB were OSP (Organic Solderability Preservative, Cu pad) and ENIG (Electroless Nickel/Immersion Gold, i.e CulNi/Au). Shearing speed was varied from 0.5 to 3.0 m/s, and tip height from 10 to 135 ${\mu}m$. As experimental results, for the OSP pad, a ductile fracture increased with tip height, and it decreased with shearing speed. In the case of ENIG pad, the ductile fracture increased with the tip height. The tip height of 10 ${\mu}m$ (2% of solder ball diameter) was unsuitable since the fracture mode was mostly pad lift. Shear energy increased with increasing shearing tip height from 10 to 135 ${\mu}m$ for both of OSP and ENIG pads.

Effect of REM Addition on The Surface Tension and The Critical Temperature of The Immiscible Liquid Phase Separation of The 60%Bi-24%Cu-16%Sn alloy

  • Park, Joong-Chul;Min, Soon-Ki;Lee, Joon-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.111-114
    • /
    • 2009
  • For the fabrication of core-shell structure bimetallic lead-free solder balls, both the critical temperature ($T_{cr}$) for the phase separation of two immiscible liquid phases and the temperature coefficient of the interfacial tension between the two separated liquid phases are required. In order to obtain this information, the temperature dependence of the surface tension of 60%Bi-24%Cu-16%Sn(-REM) alloys was measured using the constrained drop method. The slope of the temperature dependence of the surface tension changed clearly at a critical temperature for the separation of two immiscible liquid phases. The critical temperature of the 60%Bi-24%Cu-16%Sn alloy was estimated to be 1097K. An addition of 0.05% Ce decreased the critical temperature to 1085K, whereas that of 0.05% La increased it to 1117K. It was found that the surface tension and its temperature coefficient of the 60%Bi-24%Cu-16%Sn alloy were slightly increased by the addition of 0.05% Ce and 0.05% La. In addition, additions of Ce and La increased the temperature coefficient of the interfacial tension.

Novel Environmentally Benign and Low-Cost Pd-free Electroless Plating Method Using Ag Nanosol as an Activator

  • Kim, Jun Hong;Oh, Joo Young;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.215-221
    • /
    • 2017
  • The electroless plating process largely consists of substrate cleaning, seed formation (activator formation), and electroless plating. The most widely used activator in the seed formation step is Pd, and Sn ions are used to facilitate the formation of this Pd seed layer. This is problematic because the Sn ions interfere with the reduction of Cu ions during electroless plating; thus, the Sn ions must be removed by a hydrochloric acid cleaning process. This method is also expensive due to the use of Pd. In this study, Cu electroless plating was performed by forming a seed layer using a silver nanosol instead of Pd and Sn. The effects of the Ag nanosol concentration in the pretreatment solution and the pretreatment time on the thickness and surface morphology of the Cu layer were investigated. The degrees of adhesion to the substrate were similar for the electroless-plated Cu layers formed by conventional Pd activation and those formed by the Ag nanosol.

A Study on the Wear Characteristics of Bearing According to its Material in Scroll Compressor (스크롤 압축기의 크랭크 샤프트의 베어링 재질에 따른 마모특성에 관한 실험적 연구)

  • Sung, Chi-Un;Park, Young-Do;Hwang, Yu-Jin;Back, Gee-Dae;An, Sung-Young;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.194-202
    • /
    • 2008
  • In this study, we investigated the tribology behaviour of two different bearing materials. One of these alloys content is Cu(90)-Sn(10) alloy and is widely used in the automotive industry.The other is Al alloy. This bearing content is Al-Sn-Si-Cu. Therefore, it is required to study on the lublicating characteristics of bearing according to different materials. In this study, compressor bearings made by respectively "PTFE solid lubricant" and "AI alloy with superior load carrying capacity, rubbing and impact endurance", have gone through journal bearing test. Lubrication and abrasion characteristics are evaluated by analyzing the material characteristics of a scroll compressor bearing bush. The AI alloy bearing showed the most excellent lubrication and abrasion characteristics than Cu-Sn alloy under high load condition.

  • PDF