• Title/Summary/Keyword: Cu wire

Search Result 205, Processing Time 0.029 seconds

A Study on the Composition Variation of 600v IV with Thermal Deterioration (열열화에에 따른 600V IV의 조성변화에 관한 연구)

  • 최충석;류선희;김형래;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.53-56
    • /
    • 1999
  • The weight decreases of the thermal deteriorated IV were rapidly increased at 80$0^{\circ}C$ and over. At the results of the analysis of the metallurgical microscope photographs. the surface of the thermal deteriorated IV at 30$0^{\circ}C$ was mixed with the elongated and original structures of Cu. But the elongated structures could not detected at 90$0^{\circ}C$ and over. The surface structures of SEM were detected a lot of small rounded particles between crystallizations. The EDX spectra of the thermal deteriorated IV at 3$0^{\circ}C$ were uniformly detected CuL, CuK, OK, and CIK, regardless of the scanning length, but the spectra of CIK could not found at 90$0^{\circ}C$. At the DTA curves, the endothermic reactions were occurred at about 25$0^{\circ}C$ to 30$0^{\circ}C$ and 43$0^{\circ}C$, and the exothermic reactions were occurred at about 48$0^{\circ}C$ respectively.

  • PDF

A study on the properties of SmBCO coated conductors with stabilizer tape (SmBCO 고온 초전도 선재의 안정화재 특성)

  • Kim, Tae-Hyung;Oh, Sang-Soo;Kim, Ho-Sup;Ko, Rock-Kil;Song, Kyu-Jeong;Ha, Hong-Soo;Lee, Nam-Jin;Park, Kyung-Chae;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.9-12
    • /
    • 2007
  • In this study. we searched for the mechanical and electrical properties of laminated coated conductors with stabilizer tape. Stabilizer tape plays a role for mechanical and electrical stability and environmental protection. Cu material stabilizer was laminated to Ag capping layer on SmBCO conductor layer. This architecture allows the wire to meet operational requirements including the stressless at cryogenic temperature and winding tension as well as mechanical bending requirements including thermal and electrical stability under fault current conditions. First, we have experimentally studied mechanical bonding properties of the laminated Cu stabilizers on SmBCO coated conductors. We have laminated SmBCO coated conductors by continuous dipping soldering process, Second, we have investigated electrical properties of the SmBCO coated conductors with stabilizer lamination. We evaluated bonding properties, peeling strength and critical current for laminated SmBCO coated conductors with Cu stabilizers.

Cu-Filling Behavior in TSV with Positions in Wafer Level (Wafer 레벨에서의 위치에 따른 TSV의 Cu 충전거동)

  • Lee, Soon-Jae;Jang, Young-Joo;Lee, Jun-Hyeong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • Through silicon via (TSV) technology is to form a via hole in a silicon chip, and to stack the chips vertically for three-dimensional (3D) electronics packaging technology. This can reduce current path, power consumption and response time. In this study, Cu-filling substrate size was changed from Si-chip to a 4" wafer to investigate the behavior of Cu filling in wafer level. The electrolyte for Cu filling consisted of $CuSO_4$ $5H_2O$, $H_2SO_4$ and small amount of additives. The anode was Pt, and cathode was changed from $0.5{\times}0.5cm^2$ to 4" wafer. As experimental results, in the case of $5{\times}5cm^2$ Si chip, suitable distance of electrodes was 4cm having 100% filling ratio. The distance of 0~0.5 cm from current supplying location showed 100% filling ratio, and distance of 4.5~5 cm showed 95%. It was confirmed good TSV filling was achieved by plating for 2.5 hrs.

Evaluation of Machining Characteristics through Wire-Cut EDM of Brass and SKD 11 (황동과 금형강의 와이어 컷 방전가공을 통한 가공특성 평가)

  • 김정석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.130-137
    • /
    • 1997
  • The demand for wire-cut EDM is increasing rapidly in the die and tool making industry. In this study machining characteristics such as machining rate, surface roughness, hand drum form and hardness of machined material are investigated experimentally under the conditions varing pulse on time, pulse off time, peak voltage, wire tension after fixing other conditions in SKD 11 and brass and brass workpiece. It was found that various operating conditions had significant influences on machining characteristics. But the hardness of workpiece was uneffected by operating conditions. Also it was obtained experimentally that brass workpeice had better machinability than SKD 11 one.dition according to the current(Ip) in an electric spark machine : 1) Electrode is utilized Cu and Graphite. 2) Work piece is used the material of carbon steel. The condition of experiment is : 1) Current is varied 0.7(A) to 50(A) and the time of electric discharging to work piece in each time is 30(min) to 60(min). 2) After the upper side of work piece was measured in radius(5$\mu$m) of stylus analyzed the surface roughness to ade the table and graph of Rmax by yielding data. 3) Electro wear ratio is : \circled1Cooper was measured ex-machining and post-machining by the electronic balance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume $\times$specific gravity and analyzed to made its table and graph on ground the data. 4) In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V. R and the memory scope was sticked to the electric spark machine. 5) In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid , it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging.

  • PDF

Design of very fast acting fuse element using the Ag-Cu alloy (Ag-Cu 합금을 이용한 매우 빠른 동작 특성의 퓨즈 엘리멘트 설계)

  • Kim, Eun-Min;Lee, Seung-Hwan;Cho, Dae-Kweon;Kim, Shin-Hyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1070-1074
    • /
    • 2014
  • With the development of the electronics industry and widespread supply of many different electrical appliances, the factors of the electrical fires are also diversified. For this reason, the fuse, safety-critical component, needs accurate and stable operating characteristics for preventing various fire factor, and also needs various operating characteristics. Especially when the all electrical resistance are dropped by internal short of circuit, high current inrushes and makes the fire. In order to prevent this, very fast acting fuses should be applied. However, existing very fast acting characteristics fuse has less wire dimension of element Ag100% metal than that of fast acting fuse, and it is made of plating with low melting point metals, so it satisfy very fast acting but it can't satisfy durability and safety. For this reason, in this study, through the analyzing fusing characteristics of Ag-Cu alloy composition, the new alloy composition, which implement to very fast acting fuse without decrease of fuse elements dimension, is suggested. And this study classify the operating characteristics changes, a resistance change, and the rated current of the fuse in the overall composition change of Ag-Cu alloying. and it can be utilized for designing fuse.

Evaluation of frictional forces between orthodontic brackets and archwires (교정용 브라켓과 교정선 사이의 마찰력)

  • Jeong, Tae-Jong;Choie, Mok-Kyun
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.613-623
    • /
    • 2000
  • The purpose of this study was to amount of the frictional forces with the brackets and wires, ligation methods, dry/wet, offsets, interbracket distances, velocity and to compare them each other by different conditions. This study tested 0.018'x0.025' slot sized 8 types of orthodontic bracket systems and 0.016', 0.016'x0.022' sized stainless steel, NiTi, Cu-NiTi orthodontic wires. One cuspid bracket were positioned on the slide glass and archwire was engaged into bracket and ligated with elastomeric modules. The values of frictional forces were measured with the instron universal testing machine. The results were as follows; 1. Polycrystalline ceramic bracket had the highest mean frictional forces and followed and by ceramic reinforced plastic bracket, metal bracket, plastic bracket with metal slot, monocrystalline ceramic bracket, single bracket, self-ligating bracket, friction free bracket in descending order. The self-ligating bracket showed low frictional forces in the round wires and high frictional forces in the rectangular wires. 2. Stainless steel wires had the least frictional forces and followed by NiTi, Cu-NiTi wires in descending order. Round wires had lower frictional forces then that of rectangular wires. 3. The stainless steel ligation method had significantly greater mean frictional forces them the elastomeric module ligation method. 4. Artificial saliva statistically increased the frictional forces in stainless steel wire, NiTi wire and Cu-NiTi wire. 5. There was a statistically significant difference with offset change 6. There was no statistically significant difference with interbracket distance in stainless steel wires but a significant difference in NiTi wires as the interbracket was decreased. 7 There was no statistically significant difference with velocity change. From the above findings, self-ligating bracket, stainless steel wires and the elastomeric module ligation method might be effective than any other materials to reduce the frictional forces in the orthodontic treatment and can be correlated to clinical situations seen in orthodontic patient care.

  • PDF

Effect of High Pressure of Voltammetric Parameters of Copper (구리의 전압전류법적 파라미터에 미치는 압력의 영향)

  • Zun Ung Bae;Heung Lark Lee;Hong Soon Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.399-405
    • /
    • 1989
  • The dependence of voltammetric parameters on the pressure for the reduction of Cu(II) in 0.5M KCl aqueous solution has been studied. In this system micro platinum electrode, standard calomel electrode and a helix type of platinum wire were used as the working, the reference and the auxilary electrode, respectively. With increasing the pressure from 1 to 1,800 bars, the half wave potentials of first reduction wave are shifted to the more negative potentials. And the diffusion currents of first and second reduction wave become considerably larger with increase in pressure from 1 to about 1,000 bars but are getting smaller beyond 1,000 bars. The good linear relationships between diffusion current and the concentrations of Cu(II) are established over all pressure range($1{\sim}1,800$ bars). The reversibility of the each reduction step is not changed with increasing pressure.

  • PDF

Ultra Low Field Sensor Using GMI Effect in NiFe/Cu Wires

  • Kollu, Pratap;Kim, Doung-Young;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2007
  • A highly sensitive magnetic sensor using the Giant MagnetoImpedance effect has been developed. The sensor performance is studied and estimated. The sensor circuitry consists of a square wave generator (driving source), a sensing element in a form of composite wire of a 25 $\mu$m copper core electrodeposited with a thin layer of soft magnetic material ($Ni_{80}Fe_{20}$), and two amplifier stages for improving the gain, switching mechanism, scaler circuit, an AC power source driving the permeability of the magnetic coating layer of the sensing element into a dynamic state, and a signal pickup LC circuit formed by a pickup coil and an capacitor. Experimental studies on sensor have been carried out to investigate the key parameters in relation to the sensor sensitivity and resolution. The results showed that for high sensitivity and resolution, the frequency and magnitude of the ac driving current through the sensing element each has an optimum value, the resonance frequency of the signal pickup LC circuit should be equal to or twice as the driving frequency on the sensing element, and the anisotropy of the magnetic coating layer of the sensing wire element should be longitudinal.

Coated Wire Lead(Ⅱ) Ion-Selective Electrodes based on Crown Ethers (Crown Ether를 이용한 탐침형 납 이온선택성 전극)

  • Jang, Mi Kyeong;Ha, Kwang Soo;Seo, Moo Lyong
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.7
    • /
    • pp.337-342
    • /
    • 1997
  • Acryloylmethylbenzo-15-crown-5 was prepared from the reaction of 4'-hydroxymethylbenzo-15-crown-5 with acryloyl chloride. And, poly(acryloylmethylbenzo-15-crown-5) [poly(AMB15C5)] was synthesized by radical polymerization using AIBN as initiator in benzene. Coated wire lead(II) ion-selective electrodes ($Pb^{2+}$-CWISEs) using either poly(AMB15C5) or B15C5 as neutral carrier were prepared, respectively. $Pb^{2+}$-CWISEs gave linear responses with slopes of 28$\pm$ 1mV per decade within the concentration range of $10^{-5} M{\sim}10^{-1}$ M, respectively. Also, the detection limits were $10^{-6}$ M and response times were either 3 or 5 min. for B15C5 and poly(AMB15C5), respectively. $Pb^{2+}$-CWISE base on B15C5 was rather unstable than poly(AMB15C5)'s due to solubility of the B15C5 in water. The selectivity coefficients of a variety of interfering ions such as $Mg^{2+},\; Ca^{2+},\; Co^{2+},\; Ni^{2+},\; Cu^{2+},\; Zn^{2+}$ and $Cd^{2+}$ were small ($10^{-4}{\sim}10^{-5}$), while those of $Na^+$ and $K^+$ were large (0.1∼0.01). In addition, the electrode responses depended upon the pH of test solution and the composition of the membrane. In the range pH 3∼6 of test solution, potentials of Pb2+-CWISEs were hardly changed. The optimal contents of B15C5 and poly(AMB15C5) were 7.7 wt% and 13.1 wt%, respectively.

  • PDF

The Fabrication of the Single Crystal Wire from Cu Single Crystal Grown by the Czochralski Method and its Physical Properties (Czochralski법을 이용한 금속 단결정의 성장과 구조적, 전기적 성질에 관한 연구)

  • Park, Jeung-Hun;Cha, Su-Young;Park, Sang-Eon;Kim, Sung-Kyu;Cho, Chae-Ryong;Park, Hyuk-K.;Kim, Hyung-Chan;Jeong, Myung-Hwa;Jeong, Se-Young
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • It is well known that the general metals have a lot of grain boundaries. The grain boundaries play a negative role to increase the resistivity and to decrease the conductivity. The small resistivity and the large conductivity have been a goal of the material scientists, and no signal noise, perfect signal transfer, and the realization of the real sound are the dream of electronic engineers and audio manias. Generally, oxygen free copper (OFC) and Ohno continuous casting (OCC) copper cables have been used for the purpose of the precise signal transfer and low noise. However they still include a lot of grain boundaries. In our study, we have grown the single crystal by the Czochralski method and succeeded to produce single crystal wires from the crystal in the dimension of $0.5{\times}0.5{\times}2500mm$. The produced wire still possesses very good single crystal properties. We observed the structure of the wire, and measured the resistance and impedance. Glow Discharge Spectrometer (GDS) was used for analyzing the compositions of copper single crystals and commercial copper. Current-Voltage curve, resistance, total harmonic distortion and speaker frequency response were measured for comparing electrical and acoustic properties of two samples.