• Title/Summary/Keyword: Cu substrates

Search Result 463, Processing Time 0.032 seconds

디지털 프린팅 용액 공정 소재 개발 동향

  • O, Seok-Heon;Son, Won-Il;Park, Seon-Jin;Kim, Ui-Deok;Baek, Chung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.2-19.2
    • /
    • 2010
  • Printed electronics using printing process has broadened in all respects such as electrics (lighting, batteries, solar cells etc) as well as electronics (OLED, LCD, E-paper, transistor etc). Copper is considered to be a promising alternative to silver for printed electronics, due to very high conductivity at a low price. However, Copper is easily oxidized, and its oxide is non-conductive. This is the highest hurdle for making copper inks, since the heat and humidity that occurs during ink making and printing simply accelerates the oxidation process. A variety of chemical treatments including organic capping agents and metallic coating have been used to slow this oxidation. We have established synthetic conditions of copper nanoparticles (CuNPs) which are resistant to oxidation and average diameter of 20 to 50nm. Specific resistivity should be less than $4\;{\mu}{\Omega}{\cdot}cm$ when sintered at lower temperature than $250^{\circ}C$ to be able to apply to conductive patterns of FPCBs using ink-jet printing. Through this study, the parameters to control average diameter of CuNPs were found to be the introduction of additive agent, the feeding rate of reducing agent, and reaction temperature. The CuNPs with various average diameters (58, 40, 26, 20nm) could be synthesized by controlling these parameters. The dispersed solution of CuNPs with an average size of 20 nm was made with nonpolar solvent containing 3 wt% of binder, and then coated onto glass substrate. After sintering the coated substrates at $250^{\circ}C$ for 30 minutes in nitrogen atmosphere, metallic copper film resulted in a specific resistivity of $4.2\;{\mu}{\Omega}{\cdot}cm$.

  • PDF

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

Study of order-disorder transition in Pt-Ni bimetallic alloys

  • Seo, Ok-Gyun;Hwang, Jae-Seong;O, Pil-Geon;Gang, Hyeon-Cheol;Jeong, Hui-Su;Kim, -Chan;Kim, Dae-Gyun;Kim, Yun-Hui;Lee, Su-Ung;Kim, Gi-Ho;Jeong, Geon-Yeong;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.403-403
    • /
    • 2010
  • The Pt-Ni alloy is an electro-catalyst of interest in the low temperature direct methanol fuel cells(DMFCs). It has been already reported that the Pt-Ni alloy catalysts may even have enhanced activity compared to pure platinum catalyst, depending on how the surfaces are prepared. The order-disorder transition in bimetallic alloy such as $\beta$-CuZn, Cu3Au, and CuAu have been investigated greatly by x-ray diffraction. After annealing the bimetallic alloy, the crystal structure changes as observed in the order-disorder transition of Cu3Au which changes from the face centered cubic to a simple cubic structure. Pt-Ni bimetallic alloy has been already reported to have the face centered cubic structure. However, in nano-scale Pt-Ni bimetallic alloy crystals the crystal structures changes to a simple cubic structure. In this experiment, we have studied the order-disorder transition in Pt-Ni bimetallic nanocrystals. Pt/Ni thin films were deposited on sapphire(0001) substrates by e-beam evaporator and then Pt-Ni alloy were formed by RTA at 500, 600, and $700^{\circ}C$ in a vacuum environment and Pt-Ni nano particles were formed by RTA at $1059^{\circ}C$ in a vacuum environment. We measured the structure of Pt-Ni bimetallic alloy films using synchrotron x-ray diffraction and SEM.

  • PDF

Removal of Nutrients and Heavy Metals from Swine Wastewater using Chlorella vulgaris (Chlorella vulgaris를 이용한 양돈폐수 내 영양염류 및 중금속 제거)

  • Oh, Eun-Ji;Hwang, In-Sung;Yoo, Jin;Chung, Keun-Yook
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1059-1072
    • /
    • 2018
  • Bioremediation has been recognized as a suitable alternative to conventional methods of removing contaminants, and it uses fungi, bacteria and microalgae. In contrast to other organisms, microalgae are unique in that they have the ability to perform photosynthesis like plants and to utilize organic/inorganic carbon substrates, in a process called phytoremediation. Microalgae can populate a reaction site rapidly and enhance the bioremediation efficiency. In this study, Chlorella vulgaris was used to evaluate the removal potentials of the nutrients (N and P) and heavy metals (Cu and Zn) from swine wastewater. The optimum growth conditions for Chlorella vulgaris and the removal potentials of N, P, Cu, and Zn from synthetic wastewater using Chlorella vulgaris were investigated. Based on the results, the applicability of this microalga to on-site wastewater treatment was examined. Optimal growth conditions for Chlorella vulgaris were established to be $28^{\circ}C$, a pH of 7, and light and dark cycles of 14:10 h. As the concentrations of the nutrients were increased, the efficiencies of N and P removal efficiencies by Chlorella vulgaris were decreased in the single and binary mixed treatments of the nutrients, respectively. Further, the efficiencies of Cu and Zn removal also decreased as the heavy metals concentrations added were increased, both in the single and binary mixed treatments. In addition, the efficiency of Cu removal was higher than that of Zn removal. Our results indicate that Chlorella vulgaris could be used in treatment plants for the removal of nutrients and heavy metals from swine wastewater.

IBAD-MgO technology for coated conductors

  • Jo, William
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • Ion-beam assisted deposition (IBAD) technology has been successfully applied to high-temperature superconductor coated conductors (CC) as textured substrates. Since the coated conductors were proposed as a potential framework for utilizing the superior transport characteristics of $YBa_2Cu_3O_7$ and related cuprate oxides, several methods including rolling-assisted bi-axial textured substrates (RABiTS) and inclined substrate deposition (ISD), as well as IBAD, have been attempted. As of 2016, most companies that are trying to commercialize CC adapt IBAD technology except for American Superconductors who use RABiTS predominantly. For the materials in the IBAD process, initial efforts to use yttria-stabilized zirconia (YSZ) or related fluorites in Fujikura in Japan have quickly given way to MgO which technique was developed by Stanford University in the USA. In this review, we present a historical overview of IBAD technology, in particular, for the application of CC. We describe the key scientific understanding of nucleation, the texturing mechanism, and the growth of large bi-axial grains and discuss some potential new IBAD materials and systems for large-scale production.

Fabrication of Superconducting Narrow Bandpass Filters with Parallel Microstrip Line (마이크로스트립 평행결합선을 이용한 초전도 협대역 필터의 제작)

  • Park, Joo-Hyung;Lee, Sang-Yeol;Yoon, Hyung-Kuk;Yoon, Young-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1549-1551
    • /
    • 1998
  • We have designed and developed narrow bandpass multipole filters for satellite communication using $YBa_2Cu_3O_{7-x}$(YBCO) thin films on MgO substrates. The superconducting film used in this study was prepared by laser ablation on one side polished MgO (100) substrates. A Nd:YAG laser was used to fabricate YBCO thin films. The wave length of the laser was 355 nm. The laser beam was focused onto a YBCO target rotating linearly to avoid deep craters that may eject macroscopic YBCO particles. The YBCO films were grown at $750^{\circ}C$ in the oxygen partial pressure of 200 mTorr. The deposited YBCO thin films were patterned by conventional wet-etching method. The transition temperatures of YBCO thin films were 85 - 88 K and the film thicknesses were about 5,000 $\AA$. By comparing the performances of normal-metal filters and YBCO filters, we observed that superconducting YBCO multipole filters have been showed superior performances at 77 K.

  • PDF

Quench Distribution in AU/YBCO Thin Film Meander Lines with a Au Meander Line Heater (금선 히터가 있는 금/YBCO 박막 선에서의 퀜치 분포)

  • Kim, H. R.;J. W. Shim;O. B. Hyun;J. M. Oh
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • We investigated quench distribution in AU/YBCO thin film meander lines with a heater. Quench distribution during faults is important for superconducting fault current limter applications, because uniform quench allows application of higher voltages across the meander lines. AU/YBCO thin films grown on sapphire substrates were patterned into meander lines by photolithography. Gold films grown on the rear sides of the substrates were also patterned into meander lines, and used as heaters. Meander lines on the front and the rear sides were connected in parallel. The meander lines were subjected to simulated AC fault currents for quench measurements during faults. They were immersed in liquid nitrogen during the experiment for effective cooling. Resistance of the AU/YBCO meander lines initially increased more rapidly with the rear heater than without, and consequently the fault current was limited more. The resistance subsequently became similar, The resistance distribution was more uniform with the heater, especially during the initial quench. Quench was completed more uniformly and significantly earlier. This resulted in uniform distribution of dissipated power. These results could be explained with the concept of quench propagation, which was accelerated by heat transfer across the substrate from the rear heater.

  • PDF

Stress Effects CoCr2O4 Film on MgO and MgAl2O4 Grown by RF-Sputter Process

  • Ko, Hoon;Choi, Kang-Ryong;Park, Seung-Iel;Shim, In-Bo;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.163-166
    • /
    • 2008
  • Multiferroic $CoCr_2O_4$ film was deposited on MgO and $MgAl_2O_4$ substrates by the rf-sputtering process. The films were prepared at an RF-magnetron sputtering power of 50 W and a pressure of 10 mtorr (20 sccm in Ar), and at substrate temperatures of $550^{\circ}C$. The crystal structure was determined to be a spinel (Fd-3m) structure by means of X-ray diffraction (XRD) with Cu $K{\yen}{\acute{a}}$ radiation. The thickness and morphology of the films were measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The magnetic properties were measured using a Superconducting Quantum Interference Device (SQIUD) magnetometer. While the ferrimagnetic transitions were observed at about 93 K, which was determined as the Neel temperature, the magnetic properties all show different behaviors. The differences between the magnetic properties can be explained by the stress effects between $CoCr_2O_4$ and the substrates of MgO and $MgAl_2O_4$.

THIN FILM TECHNOLOGIES RELATED TO THE HIGH T$_{c}$ SUPERCONDUCTORS

  • Ri, Eui-Jae
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.415-423
    • /
    • 1996
  • Thin film technologies for fabricating SQUIDs involve etching and deposition procedures with the proper substrate materials and $YBa_2Cu_3O_{7-d}$ (YBCO) as the high $T_c$ superconductor. YBCO were prepared on various substrates of MgO, $SrTiO_3$, and $LaAlO_3$ by using off-axis magnetron sputtering methods and annealing in-situ. The parameters of film fabrication processes had been optimized to yield good quality films in terms of the critical temperature $T_c$ and the critical current density $J_c$. The optimized processes yielded $T_C$>90K along with $J_c$>$10_6A$$extrm{cm}^2$ at 77K and>$2\times10_7A/Cm^2$ at 5K. We fabricated step-edge type dc-SQUIDs and directly coupled magnetometers, producing step edges on MgO(100) substrates by etching with Ar-ion beam, depositing YBCO material on them, then patterning them by using ion-milling technique. Circuitizing washer-shape SQUIDs to possess a pair of step-edge junctions of 2-5$\mu$ line width with a high angle>$50^{\circ}C$ , we examined their I-V characteristics thoroughly and Shapiro steps clearly as we irradiate microwaves of 8-20 GHz frequency.

  • PDF

HIGH TEMPERATURE SUPERCONDUCTING THIN FILMS PREP ARED BY PULSED LASER DEPOSITION

  • Park, Yong-Ki;Kim, In-Seon;Ha, Dong-Han;Hwang, Doo-Sup;Huh, Yun-Sung;Park, Jong-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.430-436
    • /
    • 1996
  • We have grown superconducting thin films on various substrates using a pulsed laser deposition (PLD) method. $YBa_2Cu_3O_7-\delta$ (YBCO) superconducting thin films with the superconducting transition temperature ($T_{c. offset}$) of 87K were grown on Si substrates using yittria-stabilized zirconia (YSZ) and $CeO_2$ double buffer layers. We have developed a large area pulsed laser deposition system. The system was designed to deposit up to 6 different materials on a large area substrate up to 7.5cm in diameter without breaking a vacuum. The preliminary runs of the deposition of YBCO superconducting thin films on $SrTiO_3$ substrate using this system showed a very uniform thickness profile over the entire substrate holder area. $T_{c}$ of the deposited YBCO thin film, however, was scattered depending on the position and the highest value was 85K.

  • PDF