DOI QR코드

DOI QR Code

Removal of Nutrients and Heavy Metals from Swine Wastewater using Chlorella vulgaris

Chlorella vulgaris를 이용한 양돈폐수 내 영양염류 및 중금속 제거

  • Oh, Eun-Ji (Department of Environmental & Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Hwang, In-Sung ()Animal Products Inspection Division, Chungbuk Livestock and Veterinary Service) ;
  • Yoo, Jin (Department of Environmental & Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Chung, Keun-Yook (Department of Environmental & Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
  • 오은지 (충북대학교 환경생명화학과) ;
  • 황인성 (충청북도 동물위생연구소 축산물검사과) ;
  • 유진 (충북대학교 환경생명화학과) ;
  • 정근욱 (충북대학교 환경생명화학과)
  • Received : 2018.08.01
  • Accepted : 2018.09.12
  • Published : 2018.11.30

Abstract

Bioremediation has been recognized as a suitable alternative to conventional methods of removing contaminants, and it uses fungi, bacteria and microalgae. In contrast to other organisms, microalgae are unique in that they have the ability to perform photosynthesis like plants and to utilize organic/inorganic carbon substrates, in a process called phytoremediation. Microalgae can populate a reaction site rapidly and enhance the bioremediation efficiency. In this study, Chlorella vulgaris was used to evaluate the removal potentials of the nutrients (N and P) and heavy metals (Cu and Zn) from swine wastewater. The optimum growth conditions for Chlorella vulgaris and the removal potentials of N, P, Cu, and Zn from synthetic wastewater using Chlorella vulgaris were investigated. Based on the results, the applicability of this microalga to on-site wastewater treatment was examined. Optimal growth conditions for Chlorella vulgaris were established to be $28^{\circ}C$, a pH of 7, and light and dark cycles of 14:10 h. As the concentrations of the nutrients were increased, the efficiencies of N and P removal efficiencies by Chlorella vulgaris were decreased in the single and binary mixed treatments of the nutrients, respectively. Further, the efficiencies of Cu and Zn removal also decreased as the heavy metals concentrations added were increased, both in the single and binary mixed treatments. In addition, the efficiency of Cu removal was higher than that of Zn removal. Our results indicate that Chlorella vulgaris could be used in treatment plants for the removal of nutrients and heavy metals from swine wastewater.

Keywords

References

  1. Barsanti, L., Gualtieri, P., 2014, Algae: anatomy, biochemistry, and biotechnology, CRC press, U.S.A., 2006.
  2. Borowitzka, M. A., 1998, Limits to growth, in: Tam, N. F., Wong, Y. S. (Eds.), Wastewater treatment with algae, Springer, Berlin, Heidelberg, 203-226.
  3. Bruins, M. R., Kapil, S., Oehme, F. W., 2000, Microbial resistance to metals in the environment, Ecotoxicology and Environmental Safety, 45(3), 198-207. https://doi.org/10.1006/eesa.1999.1860
  4. Cai, T., Park, S. Y., Li, Y., 2013, Nutrient recovery from wastewater streams by microalgae: status and prospects, Renewable and Sustainable Energy Reviews, 19, 360-369. https://doi.org/10.1016/j.rser.2012.11.030
  5. Choi, H. J., 2014, Efficiency of nutrient removal and biomass productivity in the wastewater by microalgae membrane bioreactor process, Journal of Korean Society on Water Environment, 30(4), 386-393. https://doi.org/10.15681/KSWE.2014.30.4.386
  6. Choi, H. J., Lee, S. M., 2011, Effect of temperature, light intensity and pH on the growth rate of Chlorella vulgaris, Journal of Korean Society of Environmental Engineers, 33(7), 511-515. https://doi.org/10.4491/KSEE.2011.33.7.511
  7. Choi, S. H., 2007, Treatment and management of the livestock manure, Korean National Committee on Irrigation and Drainage, 14.
  8. Choi, S. P., Sim, S. J., 2012, Microalgae bioconversion to organic resources form $CO_2$, KIC News, 15, 11-24.
  9. Feng, Y., Li, C., Zhang, D., 2011, Lipid production of Chlorella vulgaris cultured in artificial wastewater medium, Bioresource Technology, 102(1), 101-105. https://doi.org/10.1016/j.biortech.2010.06.016
  10. Gikas, P., 2008, Single and combined effects of nickel (Ni (II)) and cobalt (Co (II)) ions on activated sludge and on other aerobic microorganisms: a review, Journal of Hazardous Materials, 159(2-3), 187-203. https://doi.org/10.1016/j.jhazmat.2008.02.048
  11. Guschina, I. A., Harwood, J. L., 2006, Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 45, 160-186. https://doi.org/10.1016/j.plipres.2006.01.001
  12. Hamasaki, A., Shioji, N., Ikuta, Y., Hukuda, Y., Makita, T., Hlrayama, K., Matuzaki, H. Tukamoto, T., Sasaki, S., 1994, Carbon dioxide fixation by microalgae photosynthesis using actual flue gas from a power plant, Applied Biochemistry and Biotechnology, 45(1), 799-809. https://doi.org/10.1007/BF02941850
  13. Jeong, D. H., Shin, J., Lee, C., Yu, S., Kim, Y., 2013, A Study on the improvement measures of livestock manure management and organic fertilizer use in Nonsan area, Journal of Environmental Impact Assessment, 22(4), 345-359. https://doi.org/10.14249/eia.2013.22.4.345
  14. Ji, M. K., Kim, H. C., Sapireddy, V. R., Yun, H. S., Abou-Shanab, R. A., Choi, J. Y., Lee, W. T., Timmes, T. C., Inamuddin., Jeon, B. H., 2013, Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04, Applied Microbiology and Biotechnology, 97(6), 2701-2710. https://doi.org/10.1007/s00253-012-4097-x
  15. Jin, E. S., Polle, J. E., Lee, H. K., Hyun, S. M., Chang, M., 2003, Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. Journal of Microbiology and Biotechnology, 13(2), 165-174.
  16. Kim, D. G., Choi, Y. E., 2014, Microalgae cultivation using LED light, Korean Chemical Engineering Research, 52(1), 8-16. https://doi.org/10.9713/kcer.2014.52.1.8
  17. Kim, D. H., Yoo, J., Chung, K. Y., 2016, Toxic effects of binary mixtures of heavy metals on the growth and P removal efficiencies of Alcaligenes sp., Korean Journal of Environmental Agriculture, 35(1), 79-86. https://doi.org/10.5338/KJEA.2016.35.1.09
  18. Kim, H. W., 2003, Nitrogen removal from anaerobically digested wastewater using microalgae, Master' s Thesis, Inha University, Incheon.
  19. Kim, I. B., Seo, J. H., Lee, H. S., 2001, Biosorption process for removing heavy metals in aqueous solution(II), Korean Society of Environmental Administartion, 7(1), 77-85.
  20. Kim, J. H., Kim, W. I., Lee, J. S., Jung, G. B., Shin, J. D., Sung, J. S., Lee, J. T., Choi, C. M., 2007, Application of microalgae for managing agricultural water quality, Korean Journal of Environmental Agriculture, 26(1), 7-16. https://doi.org/10.5338/KJEA.2007.26.1.007
  21. Kim, T. H., 2013, A Development of next-generation advanced wastewater treatment system using microalgae and LED light source, Ph. D. Dissertation, Kyung Hee University, Seoul.
  22. Kim, Y. J., Lee, S. H., 2009, A Study on developing the effective management strategies for unregistered animal feeding operations, Gyeonggi Research Institutes, Policy Research, 42, 1-177.
  23. Kim, Y. M., Kim, M. R., Kwon, T. H., Ha, J. M., Lee, J. H., 2009, Optimum culture conditions for the growth of Spirulina platensis NIES 39, Applied Chemistry for Engineering, 20(3), 285-289.
  24. Kumar, M. S., Miao, Z. H., Wyatt, S. K., 2010, Influence of nutrient loads feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium, Bioresource Technology, 101(15), 6012-6018. https://doi.org/10.1016/j.biortech.2010.02.080
  25. Lee, I. K., Boo, S. M., Lee, S. H., 2004, The diversity and strains of algae, Life Science, 262.
  26. Lee, M. H., 2004, A Silent environmental bomb! Heavy metals, Journal of the Korean Veterinary Medical Association, 39(7), 616-623.
  27. Lim, B. R., Jutidamrongphan, W., Park, K. Y., 2010, Comparison of models to describe growth of green algae Chlorella vulgaris for nutrient removal from piggery wastewater, Journal of the Korean Society of Agricultural Engineers, 52(6), 19-26. https://doi.org/10.5389/KSAE.2010.52.6.019
  28. Lim, B. S., 2009, Effect of competitive interference on the biosorption of heavy metals by immobilized algae, Master' s Thesis, Chungbuk National University, Chungbuk.
  29. Mehta, S. K., Gaur, J. P., 2005, Use of algae for removing heavy metal ions from wastewater: progress and prospects, Critical Reviews in Biotechnology, 25(3), 113-152. https://doi.org/10.1080/07388550500248571
  30. MOE, 2012, Comprehensive measures for advancement of livestock manure management, Ministry of Environment (MOE), Republic of Korea.
  31. Munoz, R., Guieysse, B., 2006, Algal-bacterial processes for the treatment of hazardous contaminants: a review, Water Research, 40(15), 2799-2815. https://doi.org/10.1016/j.watres.2006.06.011
  32. Nam, G. S., Song, Y. H., Lee, E. H., Bae, Y. S., Kim, M. O., 2012, Water quality improvement by the microalgae in agricultural regions, Water for Future, 45(6), 85-90.
  33. NIER, 2012, A Pilot investigation on the environmental impact of livestock manure and organic fertilizers, Water Environment Engineering Research, National Institute of Environmental Research (NIER), Republic of Korea.
  34. NIER, 2014, The study on the status of resource recovery system of livestock manure, Water Pollution Load Management Research, National Institute of Environmental Research (NIER), Republic of Korea.
  35. Oa, S. W., 2012, Soil adsorption characteristics of heavy metals and antibiotics in piggery waste fertilizer, Journal of Wetlands RResearch, 14(3), 365-374.
  36. Oh, S. J., Kwon, H. K., Jeon, J. Y., Yang, H. S., 2015, Effect of monochromatic light emitting diode on the growth of four microalgae species (Chlorella vulgaris, Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp.), Journal of the Korean Society of Marine Environment & Safety, 21(1), 1-8. https://doi.org/10.7837/kosomes.2015.21.1.001
  37. Park, H. J., Jin, E. J., Jung, T. M., Joo, H., Lee, J. H., 2010, Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculate, Applied Chemistry for Engineering, 21(6), 659-663.
  38. Park, J. I., Woo, H. C., Lee, J. H., 2008, Production of bio-energy from marine algae: status and perspectives, Korean Chemical Engineering Research, 46(5), 833-844.
  39. Park, K. Y., 2011, The study on the treatment of wastewater from mid- and small-size stockbreeding, Master' s Thesis, Keimyung University, Daegu.
  40. Park, K. Y., Lim, B. R., Lee, K. S., Lee, S. K., 2011, Potential use of microalgae scenedesmus acuminatus for tertiary treatment of animal wastewater, Journal of the Korean Society of Agricultural Engineers, 53(1), 63-69. https://doi.org/10.5389/KSAE.2011.53.1.063
  41. Radmer, R. J., 1996, Algal diversity and commercial algal products, Bioscience, 46(4), 263-270. https://doi.org/10.2307/1312833
  42. Richmond, A. (Ed.), 2008, Handbook of microalgal culture: biotechnology and applied phycology, John Wiley & Sons.
  43. Seo, Y. C., Lee, H. J., Kim, D. W., 2006, Characteristics of heavy metals biosorption by penicillium biomass, Journal of the Korea Society for Environmental Analysis, 9, 49-54.
  44. Sevrin-Reyssac, J., 1998, Biotreatment of swine manure by production of aquatic valuable biomasses, Agriculture, Ecosystems & Environment, 68(3), 177-186. https://doi.org/10.1016/S0167-8809(97)00070-4
  45. Shi, J., Podola, B., Melkonian, M., 2007, Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study, Journal of Applied Phycology, 19(5), 417-423. https://doi.org/10.1007/s10811-006-9148-1
  46. Sialve, B., Bernet, N., Bernard, O., 2009, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances, 27(4), 409-416. https://doi.org/10.1016/j.biotechadv.2009.03.001
  47. Tadesse, I., Green, F. B., Puhakka, J. A., 2004, Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system$^{(R)}$ treating tannery effluent, Water Research, 38(3), 645-654. https://doi.org/10.1016/j.watres.2003.10.006
  48. Travieso, L., Benítez, F., Sánchez, E., Borja, R., Martín, A., Colmenarejo, M. F., 2006, Batch mixed culture of Chlorella vulgaris using settled and diluted piggery waste, Ecological Engineering, 28(2), 158-165. https://doi.org/10.1016/j.ecoleng.2006.06.001
  49. Travieso, L., Canizares, R. O., Borja, R., Benitez, F., Dominguez, A. R., Valiente, V., 1999, Heavy metal removal by microalgae, Bulletin of Environmental Contamination and Toxicology, 62(2), 144-151. https://doi.org/10.1007/s001289900853