• Title/Summary/Keyword: Cu oxide

Search Result 859, Processing Time 0.041 seconds

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF

Melatonin Attenuates Nitric Oxide Induced Oxidative Stress on Viability and Gene Expression in Bovine Oviduct Epithelial Cells, and Subsequently Increases Development of Bovine IVM/IVF Embryos

  • Kim, J.T.;Jang, H.Y.;Park, C.K.;Cheong, H.T.;Park, I.C.;Yang, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.190-197
    • /
    • 2011
  • The objective of the present study was to elucidate the fundamental mechanism of bovine oviduct epithelial cell (BOEC) co-culture on developmental capacity of bovine IVM/IVF embryos and to determine whether or not melatonin acts as an antioxidant in BOEC culture and subsequent embryo development. These studies examined the effects of melatonin against NO-induced oxidative stress on cell viability, lipid peroxidation (LPO) and the expression of antioxidant genes (CuZnSOD, MnSOD and Catalase) or apoptosis genes (Bcl-2, Caspase-3 and Bax) during BOECs culture. We also evaluated the developmental rates of bovine IVM/IVF embryos with BOEC co-culture, which were pre-treated with melatonin ($1,000\;{\mu}M$) in the presence or absence of sodium nitroprusside (SNP, $1,000\;{\mu}M$) for 24 h. Cell viability in BOECs treated with SNP (50-$2,000\;{\mu}M$) decreased while melatonin addition (1-$1,000\;{\mu}M$) increased viability in a dose-dependent manner. Cell viability in melatonin plus SNP ($1,000\;{\mu}M$) gradually recovered according to increasing melatonin addition (1-$1,000\;{\mu}M$). The LPO products were measured by thiobarbituric acid (TBA) reaction for malondialdehyde (MDA). Addition of melatonin in BOEC culture indicated a dose-dependent decrease of MDA, and in the SNP group among BOECs treated with SNP or melatonin plus SNP groups MDA was significantly increased compared with SNP plus melatonin groups (p<0.05). In expression of apoptosis or antioxidant genes detected by RT-PCR, Bcl-2 and antioxidant genes were detected in melatonin or melatonin plus SNP groups, while Caspase-3 and Bax genes were only found in the SNP group. When bovine IVM/IVF embryos were cultured for 6-7 days under the BOEC co-culture system pre-treated with melatonin in the presence or absence of SNP, the highest developmental ability to blastocysts was obtained in the $1,000\;{\mu}M$ melatonin group. These results suggest that melatonin has an anti-oxidative effect against NO-induced oxidative stress on cell viability of BOECs and on the developmental competence of bovine IVM/IVF embryo co-culture with BOEC.

Promoter Effect on Ni/YSZ Anode Catalyst of Solid Oxide Fuel Cell for Suppressing Coke Formation in the Methane Internal Reforming (고체산화물 연료전지용 Ni/YSZ 음극 촉매에서의 메탄 내부개질 반응 시 탄소 침적 억제를 위한 첨가제 영향)

  • Kim, Hye-Roung;Choi, Ji-Eun;Youn, Hyun-Ki;Chung, Jong-Shik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.813-818
    • /
    • 2008
  • Various additives were added in small amounts on Ni/YSZ anode of SOFC (solid oxide fuel cell) in order to improve reactivity and to inhibit deactivation due to coke deposition during methane reforming using a low mole ratio steam ($H_2O/CH_4=1.5$) at $800^{\circ}C$. Ni/YSZ catalysts added with various perovskites did not show any improvement but exhibited a gradual decrease in the methane conversion. K-doped Ni/YSZ showed a steady increase and maintenance of the conversion up to 42 hours, after which there was an abrupt deactivation of catalyst owing to potassium loss by volatilization. Addition of 5% of $K_2Ti_2O_5$ on Ni/YSZ showed a stable maintenance of the conversion without K loss, and was able to prevent coke formation during a long time operation. Deactivation of catalyst during the reaction was mainly caused by the accumulation of graphidic carbon on the catalyst surface.

Electrical Characterization of Lateral NiO/Ga2O3 FETs with Heterojunction Gate Structure (이종접합 Gate 구조를 갖는 수평형 NiO/Ga2O3 FET의 전기적 특성 연구)

  • Geon-Hee Lee;Soo-Young Moon;Hyung-Jin Lee;Myeong-Cheol Shin;Ye-Jin Kim;Ga-Yeon Jeon;Jong-Min Oh;Weon-Ho Shin;Min-Kyung Kim;Cheol-Hwan Park;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.413-417
    • /
    • 2023
  • Gallium Oxide (Ga2O3) is preferred as a material for next generation power semiconductors. The Ga2O3 should solve the disadvantages of low thermal resistance characteristics and difficulty in forming an inversion layer through p-type ion implantation. However, Ga2O3 is difficult to inject p-type ions, so it is being studied in a heterojunction structure using p-type oxides, such as NiO, SnO, and Cu2O. Research the lateral-type FET structure of NiO/Ga2O3 heterojunction under the Gate contact using the Sentaurus TCAD simulation. At this time, the VG-ID and VD-ID curves were identified by the thickness of the Epi-region (channel) and the doping concentration of NiO of 1×1017 to 1×1019 cm-3. The increase in Epi region thickness has a lower threshold voltage from -4.4 V to -9.3 V at ID = 1×10-8 mA/mm, as current does not flow only when the depletion of the PN junction extends to the Epi/Sub interface. As an increase of NiO doping concentration, increases the depletion area in Ga2O3 region and a high electric field distribution on PN junction, and thus the breakdown voltage increases from 512 V to 636 V at ID =1×10-3 A/mm.

The Conservation Treatment of the Central Asian Mural Painting(II) -An Investigation on the Pigments for the Mural Painting and of the Plants Used for Making the Original Wall - (중앙아세아벽화(中央亞細亞壁畵) 보존처리(保存處理)(II) - 壁畵(벽화)의 채색(彩色) 안료(顔料) 및 벽체(壁體) 조성(造成)에 사용(使用)된 초재류(草材類) 조사(調査) -)

  • Yi, Yonghee;Yu, Heisun;Kim, Soochul;Kang, Hyungtae;Jo, Yeontae;Aoki, Shigeo;Ohbayashi, Kentaro
    • Conservation Science in Museum
    • /
    • v.4
    • /
    • pp.1-16
    • /
    • 2003
  • For the conservation treatment of the Central Asia mural painting which is to be exhibited in the new museum in Yongsan, we analyzed the pigments used in this mural painting and examined to identify the species of the straw in the wall. We also analyzed the species of the wood of the wooden protective frame and the material of the paper in it, in order to review the material and technique of the conservation treatment performed before the mural painting had been brought to the National Museum of Korea in 1916. The results were as follows: the black pigments of Bon4075 and Bon4078 is carbon(C); the white pigment on the background is gypsum[Ca(SO)4(H2O)2]; the red pigment is lead oxide(Pb3O4) and hematite(Fe2O3) etc. The straw, which had been mixed into the wall to prevent the wall from cracking, was proved to be either wheat straw or oats straw. The wooden protective frame, which protects the mural painting now, was proved to be made of Salix, Populus, Cryptomeria japonica and pine. The paper discovered in the frame was proved to be made of the bark of a mulberry.

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Effect of Na2P2O7 Electrolyte and Al Alloy Composition on Physical and Crystallographical Properties of PEO Coating Layer : II. Crystallographic Analysis of PEO Layer (플라즈마 전해 산화 코팅에 있어서 인산염 전해액과 모재 성분 변화가 Al 산화피막 물성에 미치는 영향 II. PEO 층의 결정상 분석)

  • Kim, Bae-Yeon;Kim, Jeong-Gon;Lee, Deuk-Yong;Kim, Yong-Nam;Jeon, Min-Seok;Kim, Sung-Youp;Kim, Kwang-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.247-252
    • /
    • 2012
  • Crystal structure and chemical compositions of Plasma electrolytic oxidized layer of A-1100, A-2024, A-5052, A-6061, A-6063, A-7075, ACD-7B and ACD-12 were investigated. The electrolyte for plasma electrolytic oxidation was mixture of distilled water, $Na_2P_2O_7$, Cu, Cr metal salts and KOH. ${\eta}$-Alumina, as well as ${\alpha}$-alumina, was main crystal phase. Another crystals such as $(Al_{0.948}Cr_{0.052})_2O_3$ and $(Al_{0.9}Cr_{0.1})_2O_3$ were also formed in the oxide layer. It was thought that the effect of electrolyte compositions on the physical properties and crystal system of PEO layers was greater than the effect of Al alloy composition variation.

OLED소자를 위한 그래핀 투명전극에 대한 연구

  • Kim, Yeong-Hun;Park, Jun-Gyun;Jeong, Yeong-Jong;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.237.1-237.1
    • /
    • 2015
  • OLED의 낮은 외부 광자 효율 문제를 해결하기 위해서는 발광층은 물론 전극 재료에 대한 연구가 함께 진행되어야 한다. 최근 플렉서블 디스플레이(Flexible Display) 분야에서 투명전극(Transparent Electrode)은 큰 주목을 받고 있다. 기존 전자소자의 투명전극으로는 인듐산화물(ITO, Indium Tin Oxide)이 널리 사용되어 왔으나, ITO의 주원료인 인듐(Indium)은 희소성으로 인해 앞으로 30년 후에 고갈될 것으로 예상되어 ITO를 대체할만한 투명전극 재료가 필요하게 되었다. 인듐이 포함되지 않은(Indium-free) 투명전극을 개발하려는 많은 연구들이 진행 중인데, 본 연구에서는 PEN(Polyethylene Naphthalate) 유연기판 상에 그래핀(Graphene)을 투명전극으로 구현하여 OLED의 효율을 높이는데 이용하고자 하였다. 화학 기상 증착(CVD, Chemical Vapor Deposition) 방법을 이용하여 Cu 호일 위에 그래핀을 성장시킨 후 PEN 유연기판에 전사하여 그래핀 투명전극을 구현하면서 그래핀 성장층을 단층 또는 다층으로 구분하여 성장시켜 각각의 투명전극을 구현해보았다. 유연기판 상의 그래핀의 상태를 확인하기 위해 라만 분광(Raman Spectroscopy) 분석을 이용하여 그래핀 고유의 라만 꼭지점(Raman peak)인 G 꼭지점(G peak: 1580 cm-1), 2D 꼭지점(2D peak: ~2700 cm-1)을 확인하였는데 그래핀 전사 상태가 양호하여 D 꼭지점(D peak: ~1360 cm-1)은 나타나지 않았다. 원자힘 현미경(AFM, Atomic Force Microscope) 분석을 통해 다층 및 단층 그래핀 표면의 거칠기(Roughness) 및 두께(Thickness)를 각각 확인할 수 있었고 자외선-가시광선 분광법(UV-Visible Spectroscopy) 분석으로 그래핀 투명전극과 유연기판의 투과도(Transmittance)를 분석하였으며, 단층 그래핀 투과도가 90%수준의 높은 값이 나타나 ITO보다 개선됨을 확인하였다. 그래핀 면저항은 TLM(Transmission Line Measurement)법을 통해 측정하였는데, 단층 그래핀의 경우 $800{\Omega}/{\square}$ 내외 수준임을 확인할 수 있었다. 본 연구에서는 근자외선 영역에서 높은 투과도와 우수한 전기적 특성을 가지는 그래핀 투명 전도성 전극 구조를 제안하고, 나아가 가시영역에서 ITO를 대체할 수 있는 투명 전도성 전극 물질을 개발함으로써 발광다이오드의 광효율을 높일 수 있는 투명 전도성 전극을 구현하였다.

  • PDF

Synthesis of Diazacrown Ethers Containing Phenolic Side Arms and Their Complex with Divalent Metal Ions

  • Chi, Ki-Whan;Ahn, Yoon-Soo;Shim, Kwang-Taeg;Huh, Hwang;Ahn, Jeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.688-692
    • /
    • 2002
  • The aminomethylation of phenols with para-substituents by the Mannich reaction has successfully been accomplished to produce the Mannich bases 2-6. The compounds 7-8 have also been synthesized in order to identify the effect of the side arms and t he macrocycle in the complex formation. Protonation constants and stability constants of the double armed diaza-18-crown-6 ethers 2-7 with metal ions have been determined by potentiometric method at 25 $^{\circ}C$ in 95 % methanol solution. Under a basic condition (pH > 8.0), the double-armed crown ethers 2-6 revealed stronger interaction with divalent metal ions than the simple diazacrown ether 1. The stability constants with these metal ions were Co 2+ < Ni2+ < Cu2+ > Zn 2+ in increasing order, which are in accordance with the order of the Williams-Irving series. The stability constants with alkali earth metal ions were Ca 2+ < Sr 2+ < Ba 2+ in increasing order, which may be explained by the concept of size effect. It is noteworthy that the hosts 2-6, which have phenolic side arms and a macrocycle, bind stronger with metal ions than the hosts 1 and 7. On the other hand, the host 8, which has phenolic side arms with a pyperazine ring,provided comparable stability constants to those with the host 3. These facts demonstrate that phenolic side arms play a more important role than the azacrown ether ring in the process of making a complex with metal ions especially in a basic condition. In particular, the log KML values for complexation of divalent metal ions with the hosts 2-6 had the sequence, i.e., 2 (R=OCH3) < 3 (R=CH3) < 4 (R=H) < 5 (R=Cl) < 6 (R=CF3). The stability constants of the hosts 5 and 6 containing an electron-withdrawing group are larger than those of the hosts 2 and 3 containing an electron-donating group. This substituent effect is attributed to the solvent effect in which the aryl oxide with an electron-donating group has a tendency to be tied strongly with protic solvents.

Stabilization of Metals-contaminated Farmland Soil using Limestone and Steel Refining Slag

  • Lim, Jeong-Muk;You, Youngnam;Kamala-Kannan, Seralathan;Oh, Sae-Gang;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • The metals contamination of farmland soil nearby abandoned metal mine was serious problem in Korea. Stabilization of contaminated soil was reported using various stabilizers. Application of limestone and steel refining slag was reported as effective stabilizers in the stabilization of metals. The batch studies confirmed that the mixture of limestone and steel refining slag was suitable for stabilization of metals in contaminated soil. The limestone and steel refining slag mixture (2 : 1 and 3 : 2) were used in column studies and it was confirmed that the stabilizers effectively stabilized heavy metals in contaminated soil. The pH of the soil was increased with the addition of stabilizers. Total leached concentration of metals from the column study was reduced 44, 17, and 93% in comparison to the control at arsenic, cadmium and copper, respectively. The sequential extraction studies showed that the exchangeable fraction was changed into carbonate bound fraction (Cd and Cu) and Fe-Mn oxide bound fraction (As). Based on the results we confirmed that 2:1 ratio of limestone and steel refining slag effectively stabilizes the heavy metals. The mixed treatment of lime stone with steel refining slag would be an effective and feasible method for controlling metals leaching in contaminated soil.